Evaluation du Plan de Protection de l’Atmosphère du Vaucluse

Agglomération d'Avignon – 2014-2019

Le PPA du Vaucluse arrivant à échéance en 2019, une évaluation annuelle du plan est réalisée. Pour cela, AtmoSud vérifie si les objectifs de réduction des émissions sont atteints et dresse un bilan de l’évolution de la qualité de l’air. L’évaluation a été réalisée de façon globale en tenant compte à la fois des mesures du PPA et des évolutions dites « tendancielles » intégrant notamment les évolutions structurelles et technologiques.

De la même manière, les concentrations des différents polluants considérés et la population résidente exposée aux dépassements de seuils réglementaires diminuent sensiblement à l’exception de l’ozone, polluant secondaire, pour lequel les concentrations augmentent depuis 2007.

Des dépassements des seuils réglementaires et sanitaires (plus contraignants) sont toujours observés dans les zones où les sources sont les plus nombreuses, à savoir dans les centres urbains où la densité urbaine combinée au trafic routier est la plus importante.

Au regard des résultats de l’évaluation, il semble pertinent de :

- compléter les actions définies dans le plan sur l’ensemble des polluants considérés pour envisager de respecter les objectifs 2020 ;
- définir des objectifs chiffrés sur les polluants d’intérêt sanitaire (composés organiques volatils, pesticides, PM1…) ;
- adapter les objectifs pour permettre la prise en compte des seuils sanitaires en sus des valeurs limites réglementaires.
AUTEURS DU DOCUMENT

- Lise LE BERRE : rédaction du rapport ;
- Sylvain MERCIER : rédaction du rapport ;
- Xavier VILLETARD : validation du rapport.

Pilote de l’étude
Lise LE BERRE

Contact
Sylvain MERCIER
Sylvain.Mercier@atmosud.org

Date de parution
Septembre 2018

Références
23PP1111 / Eval_PPA84-V01 / LLB-SYM-XV
SOMMAIRE

1. Contexte de l’évaluation du PPA ... 6
 1.1 Un outil juridique pour une meilleure qualité de l’air .. 6
 1.2 La pollution atmosphérique : enjeu sanitaire et environnemental ... 7
 1.3 Les raisons de l’élaboration du PPA du Vaucluse .. 7
 1.4 Les actions envisagées dans le PPA et les gains attendus .. 9
 1.5 Pourquoi une évaluation du PPA en 2018 ? ... 11

2. Les émissions depuis la mise en œuvre du PPA ... 12
 2.1 Méthodologie ... 12
 2.2 Emissions : Evaluation depuis la mise en œuvre du PPA .. 14
 2.2.1 Emissions d’oxydes d’azote (NOx) ... 14
 2.2.2 Emissions de particules en suspension de diamètre inférieur à 10 µm (PM10) ... 16
 2.2.3 Emissions de particules en suspension de diamètre inférieur à 2.5 µm (PM2.5) ... 18
 2.2.4 Emissions de dioxyde de soufre (SO2) .. 20
 2.2.5 Emissions de Composés Organiques Volatiles (COV) .. 21

3. Les concentrations depuis la mise en œuvre du PPA .. 22
 3.1 Méthodologie ... 22
 3.1.1 Mesures – réseau de stations AtmoSud ... 22
 3.1.2 Les outils de modélisation .. 23
 3.2 Concentrations : Evaluation de la mise en œuvre du PPA .. 24
 3.2.1 Concentrations en dioxyde d’azote (NOx) .. 24
 3.2.2 Concentrations en particules en suspension de diamètre inférieur à 10 µm (PM10) 26
 3.2.3 Concentrations en particules en suspension de diamètre inférieur à 2.5 µm (PM2.5) 28
 3.2.4 Concentrations en ozone (O3) ... 29
 3.2.5 Concentrations en dioxyde de soufre (SO2) ... 31
 3.2.6 Concentrations en Composés Organiques Volatiles (COV) : cas du benzène (C6H6) 31

4. Populations et surfaces exposées depuis la mise en œuvre du PPA .. 32
 4.1 Méthodologie ... 32
 4.2 Exposition : Evaluation de la mise en œuvre du PPA .. 33
 4.2.1 Exposition au dioxyde d’azote (NOx) ... 33
 4.2.2 Exposition aux particules en suspension de diamètre inférieur à 10 µm (PM10) .. 34
 4.2.3 Exposition à l’ozone (O3) ... 35
 4.2.4 Exposition au dioxyde de soufre (SO2) .. 36
 4.2.5 Exposition aux Composés Organiques Volatiles (COV) ... 36

5. Une amélioration des connaissances .. 37
 5.1 Identification des sources de pollutions ... 37
 5.2 Polluants non réglementés d’intérêt sanitaire .. 38
 5.3 Quelles sont les pistes qui restent à explorer ? .. 39

6. Conclusions ... 40

BIBLIOGRAPHIE .. 42

GLOSSAIRE ... 44

ANNEXES ... 48
LISTE DES ANNEXES

ANNEXE 1 Communes intégrées dans le périmètre du PPA du Vaucluse ... 49
ANNEXE 2 Sources de pollution, effets sur la santé, réglementation et recommandations OMS 50

LISTE DES TABLEAUX

Tableau 1 : Objectifs de réduction des émissions du PPA du Vaucluse aux horizons 2015 et 2020 10
Tableau 2 : Secteurs d’activités considérés dans les inventaires d'émissions ... 13
Tableau 3 : Réduction des émissions de NOx et comparaison aux objectifs 2015 et 2020 ... 15
Tableau 4 : Réduction des émissions de PM10 et comparaison aux objectifs 2015 et 2020 16
Tableau 5 : Réduction des émissions de PM2.5 par rapport et comparaison aux objectifs 2015 et 2020 18
Tableau 6 : Réduction des émissions de SO2 entre 2007 et 2016 ... 20
Tableau 7 : Réduction des émissions de COVNM entre 2007 et 2016 .. 21
Tableau 8 : Liste des stations de mesures sur le territoire du PPA en 2017 .. 22
Tableau 9 : Evolutions des concentrations aux stations en NO2 entre 2007 et 2017 ... 24
Tableau 10 : Evolutions des concentrations en PM10 entre 2007 et 2017 .. 26
Tableau 11 : Evolutions des concentrations en ozone entre 2005 et 2017 ... 30
Tableau 12 : Populations et surface du territoire exposées à un dépassement de la valeur limite en NO2 33
Tableau 13 : Populations et surface du territoire exposées à des dépassements pour les PM10 34
Tableau 14 : Populations et surface du territoire exposées à un dépassement de la valeur cible O3 35
Tableau 15 : Objectifs et évolutions des émissions des principaux polluants réglementés sur le territoire du PPA ... 40

LISTE DES FIGURES

Figure 1 : Schémas et plans en valeur qualité de l’air .. 6
Figure 2 : Périmètre du PPA du Vaucluse de 2014 .. 8
Figure 3 : Evolution des émissions de NOx entre 2007 et 2016 ... 14
Figure 4 : Evolution des émissions de PM10 entre 2007 et 2016 ... 16
Figure 5 : Evolution des émissions de PM2.5 entre 2007 et 2016 ... 18
Figure 6 : Evolution des émissions de SO2 entre 2007 et 2016 ... 21
Figure 7 : Evolution des émissions de COVNM entre 2007 et 2016 .. 21
Figure 8 : Localisation des sites de mesures installés sur le territoire du PPA .. 23
Figure 9 : Schéma de la chaîne de modélisation ... 23
Figure 10 : Concentrations annuelles moyennes en NO2 sur la zone PPA ... 24
Figure 11 : Historique des concentrations annuelles moyennes en NO2 aux stations 25
Figure 12 : Concentrations annuelles moyennes en PM10 sur la zone PPA .. 26
Figure 13 : Historique des concentrations annuelles moyennes en PM10 aux stations 27
Figure 14 : Concentrations annuelles moyennes en PM2.5 sur la zone PPA .. 28
Figure 15 : Concentrations en ozone moyennes (P90.2) sur la zone PPA (2015-2017) 29
Figure 16 : Historique des concentrations annuelles moyennes en O3 aux stations 30
Figure 17 : Pourcentage de la population de la zone PPA exposée à des niveaux en NO2 supérieurs à la Valeur Limite 33
Figure 18 : Pourcentage de la population de la zone PPA exposée à des niveaux en PM10 supérieurs 34
Figure 19 : Pourcentage de la population de la zone PPA exposée à des niveaux en O3 supérieurs à la Valeur Cible 35
1. Contexte de l’évaluation du PPA

1.1 Un outil juridique pour une meilleure qualité de l’air

La directive européenne 2008/50/CE concernant l’évaluation et la gestion de la qualité de l’air ambiant prévoit que, dans les zones et agglomérations où les normes de concentrations de polluants atmosphériques sont dépassées, les États membres doivent élaborer des plans ou des programmes permettant d’assurer le respect des objectifs des normes de qualité de l’air fixées à l’article R221-1 du Code de l’Environnement.

En France, ce sont les Plans de Protection de l’Atmosphère (PPA), encadrés par les articles L222-4 à L222-7 du Code de l’Environnement, qui doivent permettre d’assurer, dans un délai imparti, le respect de ces normes. Outre les zones où les normes de qualité de l’air sont dépassées ou risquent de l’être, les Plans de Protection de l’Atmosphère doivent aussi être élaborés dans toutes les agglomérations de plus de 250 000 habitants. Les PPA, dont l’élaboration est pilotée par les Préfets, sont donc des plans d’actions qui définissent des objectifs et des mesures locales préventives et correctives, d’application permanente ou temporaire, pour réduire significativement les émissions polluantes et ainsi améliorer la qualité de l’air, tant en pollution chronique que lors d’épisodes de pollution. Ils comportent des mesures réglementaires mises en œuvre par arrêtés préfectoraux, ainsi que des mesures volontaires concertées et portées par les collectivités territoriales et les acteurs locaux.

Depuis 2017, les Plans de Protection de l’Atmosphère, plans spécifiques à la qualité de l’air, doivent prendre en compte les objectifs et les orientations du Plan national de Réduction des Emissions de Polluants Atmosphériques (PREPA) initié par la loi relative à la transition énergétique pour la croissance verte (LTECV) du 17 août 2015. A ce titre, les plans non spécifiques à la qualité de l’air, qui comportent des actions pouvant avoir un impact sur celles-ci, doivent être compatibles avec le PPA. C’est le cas des Plan de Déplacements Urbains locaux (PDU) et des Plans Climat Air Énergie Territorial (PCAET). A noter que ces deux plans doivent également être compatibles avec les orientations du Schéma Régional du Climat, de l’Air et de l’Énergie (SRCAE).

Figure 1 : Schémas et plans en valeur qualité de l’air
1.2 La pollution atmosphérique : enjeu sanitaire et environnemental

Au-delà de l’aspect purement réglementaire, le PPA est établi pour répondre à une problématique environnementale et sanitaire. La pollution de l’air est aujourd’hui la seconde préoccupation environnementale des Français, après le réchauffement climatique ; le sujet est devenu l’une des priorités des pouvoirs publics. Et malgré une amélioration notable de la qualité de l’air depuis les années 1990, la pollution atmosphérique constitue toujours un enjeu majeur de santé publique et est désormais considérée comme la première cause environnementale de mort prématurée dans le monde. Il a été montré que la pollution de l’air peut diminuer l’espérance de vie de quelques mois et contribue à l’apparition de maladies graves, telles que des maladies cardiaques, des troubles respiratoires et des cancers.

La pollution de l’air est un phénomène complexe, consécutif à l’association d’un grand nombre de substances, qui interagissent de façon variable entre elles et avec l’environnement qui les entoure. L’exposition aux substances polluantes concerne l’ensemble de la population ; les enfants en bas âge, les personnes âgées, ainsi que les personnes souffrant de pathologies respiratoires et/ou cardiovasculaires étant plus sensibles à l’altération de la qualité de l’air.

Bien que, l’évaluation de l’impact de la pollution de l’air sur la santé humaine demeure difficile à appréhender, l’Agence nationale de santé publique (Santé Publique France) a estimé en 2016 l’impact sanitaire de la pollution de l’air aux particules fines anthropiques à 48 000 décès prématurés par an en France [1]. L’atteinte en tout point du territoire français d’une qualité de l’air équivalente à celle observée dans les communes rurales les moins polluées semble peu réaliste. Toutefois, si toutes les communes atteignaient les 5% des concentrations les plus faibles observées dans les communes équivalentes en matière de type d’urbanisation et de taille, 34 000 décès seraient évités chaque année en France, et les personnes de 30 ans gagneraient, en moyenne, 9 mois d’espérance de vie [1].

En Provence-Alpes-Côte d’Azur ce sont plus de 2 700 décès qui seraient évités chaque année dont près de 300 décès dans le Vaucluse. De même, si l’objectif de respecter sur l’ensemble du territoire la valeur guide en PM2.5 recommandée par l’OMS pour protéger la santé (10 µg/m³) était atteint, alors près de 18 000 décès seraient évités par an en France, dont près de 2 000 en Provence-Alpes-Côte d’Azur et 200 décès dans le Vaucluse [1].

1.3 Les raisons de l’élaboration du PPA du Vaucluse

L’obligation réglementaire de mettre en place un PPA dans les agglomérations de plus de 250 000 habitants ainsi que les nombreux dépassements des valeurs limites en NO₂ et PM10 dans le Vaucluse ont motivé l’élaboration d’un premier PPA en 2007, puis d’un second PPA en 2014 [2].

En 2014, l’analyse des enjeux du territoire du Vaucluse (deux territoires contrastés : • l’ouest très urbanisé soumis à une pollution générée majoritairement par les transports, le secteur résidentiel (utilisation du chauffage) et les activités industrielles • l’est du territoire, espaces plus ruraux et majoritairement constitués d’espaces naturels, tel que le Parc Naturel Régional du Lubéron, est moins concernés par cette pollution urbaine mais davantage exposés à une pollution liée à l’utilisation de pesticides et aux activités de brûlages et à une pollution photochimique en période estivale) avait conduit à l’élaboration d’un périmètre de la zone PPA présenté en Figure 2.

La liste complète des communes intégrées dans le périmètre du PPA du Vaucluse est présentée ANNEXE 1.

1 PM2.5 : Particules de diamètre aérodynamique inférieur à 2.5 µm
Figure 2 : Périmètre du PPA du Vaucluse de 2014

1.4 Les actions envisagées dans le PPA et les gains attendus

Les actions envisagées

Outre la classification par secteur, les actions propres à ce PPA ont été ventilées par type de mesures, à savoir :

- Les actions réglementaires (13) : Ces mesures constituent le cœur du PPA, elles ont vocation à être déclinées et précisées par des arrêtés préfectoraux ou municipaux une fois le PPA approuvé. Elles relèvent de la compétence des préfets ou des maires.

- Les actions volontaires et incitatives (14) : Ces actions ont pour but, sur la base du volontariat, d’inciter les acteurs – qu’il s’agisse d’industriels, de collectivités ou de citoyens – à mettre en place des actions de réduction de leurs émissions de polluants atmosphériques.

- Les actions d’accompagnement (2) : Ces mesures visent à sensibiliser et à informer la population, ou à améliorer les connaissances liées à la qualité de l’air sur la zone du PPA.

Ces actions visent à réduire l’exposition des populations pour les 5 polluants ou famille de polluants réglementés ciblés par le PPA à savoir le dioxyde de soufre (SO₂), les oxydes d’azote (NOₓ), les particules en suspension (PM), l’ozone (O₃) et les Composés Organiques Volatiles (COV) dont le benzène. Néanmoins les objectifs de réduction des émissions chiffrés ne s’appliquent qu’aux 3 polluants prioritaires pour lesquels des dépassements réguliers de valeurs limites sont observés :

- Les oxydes d’azote – NOₓ
- Les particules en suspension de diamètre inférieur à 10 µm – PM10
- Les particules en suspension de diamètre inférieur à 2.5 µm – PM2.5

Les sources principales de ces 5 polluants ainsi que leurs effets sur la santé et l’environnement sont présentés en ANNEXE 2.

Démarches mise en œuvre pour évaluer les gains attendus

La démarche mise en œuvre dans le cadre du PPA pour évaluer les gains attendus en termes de qualité de l’air s’appuie sur :

- L’élaboration d’inventaires des émissions pour 3 scénarios :

 - La situation de référence : cet inventaire a été construit à partir des données les plus récentes disponibles lors de son élaboration, à savoir l’année 2007.

 - La situation dite « tendancielle + PPA – 2015 » : cet inventaire a été réalisé sur la base des réductions d’émissions complémentaires envisagées pour les différentes actions du PPA. Les réductions envisagées pour chacune des actions ont été intégrées en fonction des trois cas de figures suivants :
 - Action chiffrable à partir de données fournies par les porteurs de l’action : des gains attendus en % d’émissions ont été calculés ;
 - Actions chiffrables à partir de tests de sensibilité et/ou à partir de benchmark : une « gamme » (ou fourchette) de gains attendus en % d’émissions sont indiqués ;
 - Actions non chiffrables : des objectifs de réduction d’émissions ont été intégrés.
L'estimation des concentrations en moyennes annuelles pour les 3 scénarios étudiés
L'estimation des concentrations a été réalisée à l'aide des outils de modélisation dont dispose AtmoSud sur la base des conditions météorologiques de l’année 2009, année correspondant à des conditions météorologiques « normales » – sans phénomène climatique exceptionnel sur le territoire (canicule, pluviométrie anormale ou hiver très rigoureux).

L'estimation de l’exposition des populations aux dépassements des valeurs limites (VL) réglementaires.

Gains attendus

Tableau 1 : Objectifs de réduction des émissions du PPA du Vaucluse aux horizons 2015 et 2020

<table>
<thead>
<tr>
<th>Secteur</th>
<th>PM10</th>
<th>PM2.5</th>
<th>NO(_X)</th>
<th>PM10</th>
<th>PM2.5</th>
<th>NO(_X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrie (tendanciel + PPA)</td>
<td>-1 %</td>
<td>-2 %</td>
<td>-4 %</td>
<td>-5 %</td>
<td>-5 %</td>
<td>-8 %</td>
</tr>
<tr>
<td>Transports (tendanciel + PPA)</td>
<td>-13 %</td>
<td>-19 %</td>
<td>-34 %</td>
<td>-22 %</td>
<td>-28 %</td>
<td>-52 %</td>
</tr>
<tr>
<td>Res/Ter/Agri (tendanciel + PPA)</td>
<td>-16 %</td>
<td>-23 %</td>
<td>-5 %</td>
<td>-28 %</td>
<td>-32 %</td>
<td>-4 %</td>
</tr>
<tr>
<td>Total gain (tendanciel + PPA)</td>
<td>-29 %</td>
<td>-43 %</td>
<td>-43 %</td>
<td>-55 %</td>
<td>-64 %</td>
<td>-64 %</td>
</tr>
<tr>
<td>Actions PPA seules</td>
<td>-13 %</td>
<td>-16 %</td>
<td>-13 %</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Objectifs Nationaux (Grenelle)</td>
<td>-30 %</td>
<td>-30 %</td>
<td>-40 %</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Pour résumer, la mise en œuvre du bouquet d’actions PPA dans son intégralité devait initialement permettre en 2015 de contribuer significativement aux objectifs nationaux de réduction des émissions de particules PM10 et PM2.5 et de quasiment atteindre l’objectif national pour les NO\(_X\). Il doit également réduire de plus de 80% la part de la population résidentielle exposée à des dépassements de la valeur limite pour les PM10 et le NO\(_2\) sur la zone PPA, avec un objectif de moins de 1 000 résidents exposés à des dépassements de NO\(_2\) et de PM10.

\(^2\) L’inventaire des émissions du scénario « tendanciel -2020 » a été réalisé sur la base des facteurs d’évolution nationaux issus de l’application du scénario AME de l’étude OPTINEC V [5].
1.5 Pourquoi une évaluation du PPA en 2018 ?

Cette évaluation est d’autant plus importante en raison de l’existence de procédures d’infractions européennes et d’un contentieux national :

- **Procédures d’infractions européennes**

- **Contentieux national**

Dans le cadre de sa mission d’intérêt général de surveillance de la qualité de l’air de la région Provence-Alpes-Côte-d’Azur, AtmoSud participe aux différentes étapes de l’élaboration, de la mise en œuvre, de suivi, d’évaluation et de révision des PPA.

AtmoSud contribue à l’évaluation du PPA du Vaucluse en dressant, dans le présent rapport :

- un bilan de l’évolution des données de qualité de l’air depuis la mise en œuvre du PPA et une évaluation du respect des objectifs fixés dans le PPA et ce pour :
 - les émissions,
 - les concentrations environnementales,
 - les populations exposées à des dépassements de seuils règlementaires ;
- une synthèse des principales études d’améliorations des connaissances de la qualité de l’air sur le territoire.
2. Les émissions depuis la mise en œuvre du PPA

Cette partie dresse un bilan de l’évolution des émissions des polluants réglementés ciblés par le PPA hormis l’ozone, polluant secondaire non directement émis mais issu de la transformation de polluants primaires sous l’action du rayonnement solaire.

2.1 Méthodologie

 ► Construction de l’inventaire des émissions

La méthodologie utilisée pour construire les inventaires dans le cadre des travaux d’évaluation du PPA s’appuie sur les préconisations nationales du Pôle de Coordination des Inventaires Territoriaux (PCIT). De façon générique, les émissions polluantes d’un secteur donné sont estimées à partir :

- de données d’activités (consommation d’énergie des logements, trafic routier, production industrielle, etc.),
- et un facteur d’émissions propre à chaque polluant et à l’activité considérée.

Il s’agit donc d’identifier toutes les sources possibles de polluants atmosphériques et d’associer à chacune un indicateur d’activité et un facteur d’émission. Pour ce faire, deux méthodes peuvent être utilisées :

- méthode descendante ou « top-down » : des données globales (nationales, régionales, départementales) sont utilisées et réparties sur les communes ou mailles d’un cadastre à l’aide de clés de répartition spatiales (population, zones bâties, zones cultivées, forêts, etc.);
- méthode ascendante ou « bottom-up » : des données à haute résolution (logement, industrie, axe routier, etc.) sont utilisées et ré-agrégées pour aboutir à une résolution moins fine (commune, département, etc.).

Toute la difficulté de la construction de l’inventaire des émissions réside dans l’évaluation de l’activité des sources de polluants atmosphériques. Au niveau local, la méthodologie ascendante (bottom-up) est privilégiée, ce qui implique de disposer des données les plus fines et les plus pertinentes possibles : par exemple, des comptages routiers, des données de production par site ou la composition du parc logement à une échelle fine (de l’ordre de la commune), etc. Lorsque les données locales ne sont pas disponibles, les émissions sont estimées à partir de données du niveau géographique supérieur puis spatialisées à l’aide de clés de répartition comme le nombre de salariés par exemple (méthodologie descendante ou « top-down »).

Les applications qui sont faites de l’inventaire des émissions nécessitent de connaître précisément la localisation des émissions polluantes (et donc des émetteurs), ainsi que leur temporalisation, c’est-à-dire la manière dont elles se produisent au fil du temps. La version spatialisée et temporalisée de l’inventaire des émissions se nomme le « cadastre des émissions ». In fine, le cadastre des émissions polluantes permet de reconstituer les émissions polluantes sur toute la région Provence-Alpes-Côte-d’Azur, sur un maillage de 1km x 1km avec une résolution horaire.

 ► Secteurs d’activités considérés

Les inventaires d’émissions produits par AtmoSud de façon générale et dans le cadre des travaux d’évaluation du PPA s’appuient sur une nomenclature européenne appelée « Selected Nomenclature for Air Pollution » ou SNAP qui recense plus de 200 secteurs émetteurs de polluants. C’est la nomenclature utilisée pour la construction de l’inventaire de la région Provence-Alpes-Côte-d’Azur.
Néanmoins afin de faciliter la compréhension par le grand public, les émissions sont regroupées et communiquées selon six grands secteurs plus facilement compréhensibles présentés ci-après.

Tableau 2 : Secteurs d’activités considérés dans les inventaires d’émissions

<table>
<thead>
<tr>
<th>Secteur d’activités considérés dans les inventaires d’émissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture, sylviculture et nature</td>
</tr>
<tr>
<td>Industrie et traitement des déchets</td>
</tr>
<tr>
<td>Production et distribution d’énergie</td>
</tr>
<tr>
<td>Résidentiel et tertiaire</td>
</tr>
<tr>
<td>Transports non routiers</td>
</tr>
<tr>
<td>Transports routiers</td>
</tr>
</tbody>
</table>

► Incertitudes associées aux calculs des émissions

Comme dans toute démarche de modélisation, les calculs d’émissions sont associés à des incertitudes liées :

- d’une part aux données d’activités qui peuvent être imprécises ou non spécifiques à la région Provence-Alpes-Côte-d’Azur ;
- d’autre part, aux facteurs d’émissions pris en compte qui peuvent être mal connus pour certains secteurs d’activité, ou correspondre à des conditions d’émissions « standard », éloignées de la réalité. A titre d’exemple :
 - pour le secteur du trafic routier, la connaissance des facteurs d’émissions à l’échappement est limitée par le faible nombre de données disponibles pour les véhicules de nouvelles normes, en particulier à la date de mise en service. Ainsi, les bases de données de facteurs d’émissions du trafic routier sont revues régulièrement et enrichies. De plus, les conditions de conduite influencent les émissions des véhicules. Les facteurs d’émission liés à l’abrasion des pièces mécaniques ou des routes sont entachés de fortes incertitudes, plus importantes que celles liées à l’échappement.
 - pour le secteur lié au chauffage résidentiel et tertiaire, la qualité du bois, son degré d’humidité ou encore l’entretien des équipements de chauffage au bois influencent fortement les niveaux d’émissions et augmentent l’incertitude associée aux facteurs d’émissions pour ce parc d’équipements.

► Amélioration continue

L’inventaire des émissions s’inscrit dans un processus d’amélioration continue : des améliorations sont apportées régulièrement. Depuis l’élaboration du PPA du Vaucluse, les améliorations ont principalement porté sur :

- mise en conformité des méthodologies de calculs avec les préconisations nationales du Pôle de Coordination des Inventaires Territoriaux (PCIT).
- amélioration générale des données sources prises en compte avec l’arrivée de l’OPEN DATA ;
- intégration de la nouvelle version (version 5) du modèle COPERT (COmputer Program to calculate Emission from Road Transport), base de données des facteurs d’émission routiers ;
- intégration d’un parc détaillée d’appareils de chauffage au bois à partir d’une compilation de différentes études (enquête nationale BVA menée par l’ADEME en 2011 et enquête régionale menée CERC en 2015).

Chaque année, un recalcul de l’inventaire des années antérieures est réalisé à partir des méthodologies les plus récentes afin de s’affranchir des différences et permettre des comparaisons.

3 ADEME : Agence de l’environnement et de la maîtrise de l’énergie
4 CERC : Cellule Économique Régionale du BTP PACA.
2.2 **Emissions : Evaluation depuis la mise en œuvre du PPA**

Si l’ensemble des actions du PPA dispose d’un indicateur de suivi, l’impact spécifique de chaque action sur les émissions et la qualité de l’air n’est pas toujours évaluable.

Ainsi, l’évaluation du PPA sur les émissions a été réalisée de façon globale, les évolutions des émissions tiennent compte à la fois des évolutions engendrées par la mise en place des actions du PPA et des évolutions dites « tendancielles » générées par des phénomènes tels que les améliorations technologiques du parc automobile ou encore l’amélioration de la performance énergétique des bâtiments.

Nota Bene :

2.2.1 Emissions d’oxydes d’azote (NO\(_X\))

Comme le présente la Figure 3 et le Tableau 3, les émissions totales de NO\(_X\) diminuent de 31% entre la situation de référence de 2007 et 2016.

L’objectif 2015 de réduction des émissions de NO\(_X\) inscrit dans le PPA (-43 %) n’est donc pas atteint. De plus, au regard de l’évolution des émissions depuis 2014, l’objectif 2020 (-64 %) semble également difficilement atteignable.

Figure 3 : Evolution des émissions de NO\(_X\) entre 2007 et 2016
Tableau 3 : Réduction des émissions de NO\(_X\) et comparaison aux objectifs 2015 et 2020

<table>
<thead>
<tr>
<th>ZONE PPA 84</th>
<th>Evolution par rapport aux émissions totales</th>
<th>Evolution par rapport aux émissions sectorielles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industries tous secteurs confondus</td>
<td>-5 %</td>
<td>-4 %</td>
</tr>
<tr>
<td>Transports</td>
<td>-23 %</td>
<td>-34 %</td>
</tr>
<tr>
<td>Résidentiel, tertiaire et agriculture nature</td>
<td>-3 %</td>
<td>-5 %</td>
</tr>
<tr>
<td>TOTAL - tous secteurs confondus</td>
<td>-31 %</td>
<td>-43 %</td>
</tr>
</tbody>
</table>

Principal contributeur des émissions de NO\(_X\), le secteur des transports voit ses émissions diminuer de 31 %, entre la situation de référence 2007 et 2016, ce qui représente une baisse de 23 % des émissions globales de NO\(_X\). Cette baisse, principalement liée à la mise en application des normes euro et au renouvellement progressif du parc automobile, n’est pas à la hauteur des objectifs fixés pour ce secteur en 2015 (-34 %) et 2020 (-52 %). Les causes identifiées sont une augmentation du trafic sur la zone du PPA et des gains technologiques constatés inférieurs aux gains escomptés.

Le secteur lié à l’industrie au sens large (production d’énergie / industrie / traitement des déchets) a, quant à lui, vu ses émissions baissées de 34 % entre 2007 et 2016. L’objectif 2015 de réduction de ce secteur (-34 %) est atteint depuis 2015. Toutefois, à ce jour l’objectif 2020 n’est pas encore atteint.

Enfin, les émissions de NO\(_X\) du secteur résidentiel-tertiaire et du secteur agriculture et nature ont diminuées de 27 % entre 2007 et 2016 ce qui représente une baisse de 3 % des émissions globales de NO\(_X\). Pour ces secteurs qui représentent environ 10% des émissions totales, les objectifs 2015 et 2020 ne sont pas atteints.

L’objectif 2015 global de réduction des émissions de NO\(_X\) inscrit dans le PPA n’est pas atteint et au regard de l’évolution des émissions depuis 2012, l’objectif 2020 sera difficilement atteignable. Des efforts de réduction d’émissions de NO\(_X\) restent donc à faire notamment dans les secteurs des transports et du résidentiel tertiaire.
2.2.2 Emissions de particules en suspension de diamètre inférieur à 10 µm (PM10)

Comme le présente la Figure 4 et le Tableau 4, les émissions totales de PM10 diminuent de 17 % entre la situation de référence de 2007 et 2016.

L’objectif 2015 de réduction des émissions de PM10 inscrit dans le PPA (-29 %) peut donc être considéré comme atteint et ce depuis 2014. Toutefois, au regard de l’évolution des émissions depuis 2014, l’objectif 2020 (-55%) semble difficilement atteignable.

Figure 4 : Evolution des émissions de PM10 entre 2007 et 2016
Le secteur des transports, a vu ses émissions de PM10 baisser de 24 % entre 2007 et 2016. Tout comme pour les NOx, cette baisse, principalement liée à la mise en application des normes euro et au renouvellement progressif du parc automobile, n’atteint pas les objectifs sectoriels fixés en 2015 (-29 %) et 2020 (-50 %). Comme pour les oxydes d’azote, les causes identifiées sont l’augmentation du trafic sur la zone du PPA et des gains technologiques constatés inférieurs aux gains escomptés.

Le secteur lié à l’industrie au sens large (production d’énergie / industrie / traitement des déchets) a, quant à lui, vu ses émissions diminuer de près de 17 %, entre la situation de référence 2007 et 2016, ce qui représente une baisse de l’ordre de 11 % des émissions globales de PM10. Cette baisse, principalement liée à l’amélioration des procédés de dépollution et aux évolutions de la production industrielle, est largement à la hauteur de l’objectif 2015 fixé dans le PPA (-3 %). L’objectif industrie 2015 est atteint depuis 2012 et sont depuis relativement stable et fonction de l’activité industrielle. L’objectif de réduction 2020 (-31 %) semble donc difficilement atteignable. Ce secteur contribue tout de même encore à 20 % des émissions de PM10.

Enfin, les émissions de PM10 du secteur résidentiel / tertiaire, qui contribuent également à près de 40 % des émissions totales de PM10, n’ont diminuées que de 9 % entre 2007 et 2016 ce qui représente une baisse de l’ordre de 3 % des émissions globales de PM10. Cette baisse n’est pas à la hauteur des objectifs fixés pour ce secteur en 2015 (-39 %) et 2020 (-38 %). En cause, une tendance à la hausse des surfaces chauffées (logements et locaux commerciaux) et un renouvellement du parc d’appareils de chauffage ancien insuffisant. La consommation énergétique par unité de surface n’a également pas significativement baissé pendant la durée du plan pour permettre une réduction des émissions polluantes associées. A noter que les émissions en particules liées aux chauffages domestiques dépendent principalement des conditions climatiques hivernales et des consommations associées aux moyens de chauffe.

L’objectif 2015 global de réduction des émissions de PM10 inscrit dans le PPA n’est pas atteint et au regard de l’évolution des émissions depuis 2012, l’objectif 2020 sera difficilement atteignable. Des efforts de réduction d’émissions de PM10 restent donc à faire notamment dans le secteur résidentiel tertiaire mais également dans le secteur des transports, principaux contributeurs de PM10 n’atteignant pas les objectifs 2015 fixés dans le PPA du Vaucluse.
2.2.3 Emissions de particules en suspension de diamètre inférieur à 2.5 µm (PM2.5)

Comme le présente la Figure 5 et le Tableau 5, les émissions totales de PM2.5 diminuent de 21 % entre la situation de référence 2007 et 2016.

L’objectif 2015 de réduction des émissions de PM2.5 inscrit dans le PPA (-43 %) n’est donc pas atteint et au regard de l’évolution des émissions depuis 2014, l’objectif 2020 (-64 %) semble difficilement atteignable.

Fig. 5 : Evolution des émissions de PM2.5 entre 2007 et 2016

![Figure 5: Evolution des émissions de PM2.5 entre 2007 et 2016](image)

Tableau 5 : Réduction des émissions de PM2.5 par rapport et comparaison aux objectifs 2015 et 2020

<table>
<thead>
<tr>
<th>ZONE PPA 84</th>
<th>Evolution par rapport aux émissions totales</th>
<th>Evolution par rapport aux émissions sectorielles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industries tous secteurs confondus</td>
<td>-5 %</td>
<td>-2 %</td>
</tr>
<tr>
<td>Transports</td>
<td>-14 %</td>
<td>-19 %</td>
</tr>
<tr>
<td>Résidentiel, tertiaire et agriculture nature</td>
<td>-2 %</td>
<td>-23 %</td>
</tr>
<tr>
<td>TOTAL - tous secteurs confondus</td>
<td>-21 %</td>
<td>-43 %</td>
</tr>
</tbody>
</table>
Comme pour les émissions de PM10, le secteur des transports a vu ses émissions baisser de près de 30 % entre 2007 et 2016. Tout comme pour les PM10, cette baisse, principalement liée à la mise en application des normes euro et au renouvellement progressif du parc automobile, n’atteint pas les objectifs fixés en 2015 (-43 %) et 2020 (-64 %). Les causes identifiées sont l’augmentation du trafic sur la zone du PPA et des gains technologiques constatés inférieurs aux gains escomptés.

Le secteur lié à l’industrie au sens large (production d’énergie / industrie / traitement des déchets) a, quant à lui, vu ses émissions diminuer de près de 20 %, entre la situation de référence 2007 et 2016, ce qui représente une baisse de l’ordre de 5 % des émissions globales de PM2.5. Cette baisse, principalement liée à l’amélioration des procédés de dépollution et aux évolutions de la production industrielle, atteint l’objectif 2015 fixé dans le PPA (-13 %). L’objectif industrie 2015 est atteint depuis 2012 et sont depuis relativement stable et fonction de l’activité industrielle. L’objectif de réduction 2020 (-36 %) semble donc difficilement atteignable. Ce secteur contribue tout de même encore à 20 % des émissions de PM2.5.

Enfin, les émissions de PM2.5 du secteur résidentiel / tertiaire, qui contribue à 45 % des émissions totales de PM2.5, n’ont diminuées que de 7 % entre 2007 et 2016 ce qui représente une baisse de l’ordre de 2% des émissions globales de PM2.5. Cette baisse n’est pas à la hauteur des objectifs fixés pour ce secteur en 2015 (-43%) et 2020 (-64 %). En cause, une tendance à la hausse des surfaces chauffées (logements et locaux commerciaux), un renouvellement du parc d’appareils de chauffage ancien insuffisant. La consommation énergétique par unité de surface n’a également pas significativement baissé pendant la durée du plan pour permettre une réduction des émissions polluantes associées. A noter que les émissions en particules liées aux chauffages domestiques dépendent principalement des conditions climatiques hivernales et des consommations associées aux moyens de chauffe.

L’objectif 2015 global de réduction des émissions de PM2.5 inscrit dans le PPA n’est pas atteint et au regard de l’évolution des émissions depuis 2012, l’objectif 2020 sera difficilement atteignable. Des efforts de réduction d’émissions de PM2.5 restent donc à faire notamment dans le secteur résidentiel tertiaire et le secteur des transports, principaux contributeurs de PM2.5 n’atteignant pas les objectifs 2015 fixés dans le PPA du Vaucluse.
2.2.4 Emissions de dioxyde de soufre (SO₂)

Dans le cadre de l’inventaire des émissions, AtmoSud estime également les émissions de dioxyde de soufre (polluant ciblé dans le PPA mais pour lequel aucun objectif de réduction n’a été chiffré). La Figure 6 et le Tableau 6 présentent les évolutions des émissions de SO₂ depuis 2007, année ayant servi de référence pour l’établissement des objectifs PPA des oxydes d’azote et des particules.

Figure 6 : Evolution des émissions de SO₂ entre 2007 et 2016

Entre 2007 et 2016, **les émissions totales de SO₂ ont diminué de 42 %** en raison de la diminution des teneurs en soufre dans les différents fiouls. Les émissions ont baissé principalement entre 2007 et 2013 depuis les émissions sont plutôt stables et liées aux différentes activités.

Cette baisse est essentiellement liée à la baisse des émissions :

- du secteur industriel au sens large qui représentait près de 75 % des émissions totales de SO₂ en 2007, même si une ré-augmentation des émissions a été constatée depuis 2015 ;
- du secteur résidentiel qui a vu ses émissions baisser de près de 70 %.

Le secteur des transports voit également ses émissions baisser en raison de l’abaissement des teneurs en soufre des fiouls mais dans une moindre mesure au regard de sa contribution aux émissions totales.

Tableau 6 : Réduction des émissions de SO₂ entre 2007 et 2016

<table>
<thead>
<tr>
<th>ZONE PPA 84</th>
<th>Evolution par rapport aux émissions totales</th>
<th>Evolution par rapport aux émissions sectorielles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industries tous secteurs confondus</td>
<td>-24 %</td>
<td>-32 %</td>
</tr>
<tr>
<td>Transports</td>
<td>-2 %</td>
<td>-64 %</td>
</tr>
<tr>
<td>Résidentiel, tertiaire et agriculture nature</td>
<td>-15 %</td>
<td>-69 %</td>
</tr>
<tr>
<td>TOTAL - tous secteurs confondus</td>
<td>-42 %</td>
<td>-42 %</td>
</tr>
</tbody>
</table>
2.2.5 Émissions de Composés Organiques Volatiles (COV)

Dans le cadre de l’inventaire des émissions, AtmoSud estime également les émissions des Composés Organiques Volatils Non Méthaniques (COVNM : famille de polluants ciblée dans le PPA et incluant le benzène mais pour laquelle aucun objectif de réduction n’a été chiffré). La Figure 7 et le Tableau 7 présentent les évolutions des émissions de COVM depuis 2007, année ayant servi de référence pour l’établissement des objectifs PPA des NOx et des PM.

Figure 7 : Evolution des émissions de COVNM entre 2007 et 2016

Tableau 7 : Réduction des émissions de COVNM entre 2007 et 2016

Entre 2007 et 2016, les émissions totales de COVNM ont diminué de 37 %. Les baisses ont principalement été observées avant 2014. Depuis 2014 les émissions restent relativement stables. Les secteurs ayant contribué à la baisse des émissions de COVNM sont :

- le secteur des transports routier qui a vu ses émissions diminuer de -72 % entre 2007 et 2016 ce qui représente un peu plus de 20% des émissions totales de COVNM et ;
- le secteur de l’industrie dont les émissions ont baissé de -37 % entre 2007 et 2016 ce qui représente près de 10 % des émissions totales de COVNM.

Les émissions de COVNM des secteurs résidentiel et agriculture/nature, qui représentent à eux deux plus de 50 % des émissions totales de COVNM, n’ont que très peu diminuées.
3. Les concentrations depuis la mise en œuvre du PPA

Cette partie dresse un bilan de la qualité de l’air sur le territoire pour les polluants réglementaires ciblés par le PPA, à savoir le dioxyde d’azote, les particules en suspension, l’ozone, le dioxyde de soufre, et les composés organiques volatils.

3.1 Méthodologie

La méthodologie employée repose sur l’analyse de l’évolution des concentrations des différents polluants depuis 2007 (année de référence du PPA). Pour ce faire, AtmoSud dispose de différents outils dont notamment :

- un réseau de stations de mesures ;
- des outils de modélisation de la dispersion atmosphérique.

3.1.1 Mesures – réseau de stations AtmoSud

Les stations de mesures sont déployées par AtmoSud dans le cadre de campagnes de surveillance fixes ou temporaires (zones protégées, établissements sensibles, zones agricoles utilisant des pesticides, activités émettrices d’une pollution spécifique...).

Tableau 8 : Liste des stations de mesures sur le territoire du PPA en 2017
3.1.2 Les outils de modélisation

Le dispositif de modélisation de la qualité de l’air a pour objectif de reproduire la réalité complexe qu’est la qualité de l’air à travers l’estimation des concentrations de polluants en tout point du territoire contrairement aux stations de mesures qui donnent une information locale.

Pour ce faire, le dispositif simule la dispersion des émissions recensées dans l’inventaire (Cf. paragraphe 2.1) en tenant compte de nombreux paramètres : l’environnement (topographie, occupation du sol, configuration des rues et du bâti...), les conditions météorologiques (pression, champs de vent, température, rayonnement…) et la physique et chimie de l’atmosphère.

La chaine de modélisation utilisée est une chaîne intégrant plusieurs échelles. La méthode développée par AtmoSud combine les résultats de modèles à l’échelle régionale et à fine échelle. Ces calculs permettent de produire des cartographies de concentrations annuelles à une résolution de 25 mètres qui intègrent les informations locales des stations de mesures afin d’améliorer la qualité de la donnée et de réduire les incertitudes de modélisation.
3.2 Concentrations Evaluation de la mise en œuvre du PPA

La France fixe dans son droit national adapté des directives européennes des valeurs limites de concentration horaires, journalières ou annuelles à ne pas dépasser pour les polluants présentés dans cette partie (Cf. ANNEXE 2).

La valeur limite est définie, par polluant, comme le « niveau maximal de concentration de ce polluant dans l’atmosphère, fixé sur la base des connaissances scientifiques, dans le but d'éviter, de prévenir ou de réduire les effets nocifs de ces substances pour la santé humaine ou pour l'environnement ».

Comme pour les émissions, si l’ensemble des actions du PPA dispose d’un indicateur de suivi, l’impact spécifique de chaque action sur les concentrations n’est pas toujours évaluable. Ainsi, l’évaluation du PPA sur les concentrations a été réalisée de façon globale, les évolutions tiennent compte à la fois des évolutions engendrées par la mise en place des actions du PPA et des évolutions dites « tendancielles ».

3.2.1 Concentrations en dioxyde d’azote (NO₂)

Les transports constituant l’un des principaux contributeurs aux émissions de dioxyde d’azote, les concentrations sont plus importantes à proximité des axes routiers et dans les centres urbains, où la densité du trafic est la plus forte. Dans les agglomérations, la densité du bâti joue également un rôle aggravant, en limitant le renouvellement des masses d’air. Dans les zones péri-urbaines, les niveaux rencontrés décroissent rapidement à mesure que l’on s’éloigne des grands axes, la superficie des zones à risque de dépassement est, par conséquent, restreinte (de quelques dizaines à quelques centaines de mètres de part et d’autre de la voirie).

La tendance de l’évolution des concentrations en NO₂ est à la baisse sur les stations de la zone PPA depuis l’année 2007. Cette diminution est comparable à celle de la Région Provence Alpes Côte-d’azur (-22 %). Néanmoins, la situation reste dégradée à proximité des grands axes routiers et dans les centres urbains.

<table>
<thead>
<tr>
<th>Tableau 9 : Evolutions des concentrations aux stations en NO₂ entre 2007 et 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Évolution des concentrations en NO₂</td>
</tr>
<tr>
<td>Station de fond urbain Avignon Mairie</td>
</tr>
<tr>
<td>PROVENCE-ALPES-CÔTE-D’AZUR</td>
</tr>
</tbody>
</table>

Figure 10 : Concentrations annuelles moyennes en NO₂ sur la zone PPA
On note toutefois une influence de l’environnement dans lesquelles se trouvent les stations sur les baisses de concentrations en oxydes d’azote : la station d’influence trafic Avignon Semard montre des concentrations de NO₂ plus élevées que les stations d’influence de fond Avignon Mairie et Le Pontet. Sur la zone PPA, les VL réglementaires annuelles (40µg/m³) ne sont pas dépassées depuis 2007.

Figure 11 : Historique des concentrations annuelles moyennes en NO₂ aux stations
3.2.2 Concentrations en particules en suspension de diamètre inférieur à 10 µm (PM10)

Les particules en suspension de diamètre inférieur à 10 µm proviennent de sources multiples, naturelles ou anthropiques (transports, chauffages domestiques et notamment au bois), ce qui explique leur répartition relativement homogène sur le territoire comparativement à d'autres polluants tels que le NO₂.

Depuis 2007, les stations de mesure montrent une nette tendance à la baisse des concentrations en PM10 (-37% sur la station Avignon Mairie), comparable à l’évolution régionale.

Tableau 10 : Evolutions des concentrations en PM10 entre 2007 et 2017

<table>
<thead>
<tr>
<th>Evolution des concentrations en PM10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station de fond urbain Avignon Mairie</td>
</tr>
<tr>
<td>PROVENCE-ALPES-CÔTE-D’AZUR</td>
</tr>
</tbody>
</table>

Figure 12 : Concentrations annuelles moyennes en PM10 sur la zone PPA
Sur les stations du périmètre du PPA, la VL annuelle (40 µg/m³/an) n’est pas dépassée depuis 2007, et l’objectif de qualité est atteint depuis 2013.

Figure 13 : Historique des concentrations annuelles moyennes en PM10 aux stations
3.2.3 Concentrations en particules en suspension de diamètre inférieur à 2.5 µm (PM2.5)

Il n’est pas possible de représenter l’évolution sous forme graphique des concentrations en PM2.5 sur la zone PPA. Malgré cela, on peut tout de même observer à partir des cartes de concentrations et des valeurs disponibles que, de la même manière que pour les PM10 et qu’au niveau régional (-48% entre 2007 et 2017), la tendance des concentrations en PM2.5 est à la baisse sur la zone PPA. Sur la station de mesure Avignon Centre, les concentrations en PM2.5 mesurées varient de 15 µg/m³ en 2010 à 13 µg/m³ en 2017.

La valeur limite annuelle (25µg/m³), tout comme la valeur cible annuelle (20µg/m³), ne sont donc pas dépassées sur la période de mesures.

Figure 14 : Concentrations annuelles moyennes en PM2.5 sur la zone PPA
3.2.4 Concentrations en ozone (O\textsubscript{3})

L'ozone est un polluant qui n’est pas directement émis dans l’atmosphère, il est issu d’un équilibre entre production et consommation par d’autres composés (notamment les oxydes d’azote et les composés organiques volatils) sous l’action de l’énergie solaire. Ces précurseurs et à la fois consommateurs d’ozone étant majoritairement concentrés dans les centres urbains et zones péri-urbaines, ils limitent son accumulation dans ces zones. Néanmoins, l'ozone est une espèce relativement stable, son temps de vie chimique étant typiquement de l’ordre de la semaine, il s’accumule dans les zones rurales.

L’ozone est présent sur le département du Vaucluse de façon chronique. La carte suivante fait apparaître cette distribution hétérogène sur le territoire. La valeur cible (à ne pas dépasser à terme) est de 120 µg/m3 (sur une plage de 8h) plus de 25 jours par an. Pour faire apparaître ce dépassement, la carte représente le 26ème maximum journalier sur 8h de concentration en ozone, moyenné sur les 3 dernières années. La zone plus claire qui entoure Avignon qui indique que les concentrations en O\textsubscript{3} sont plus faibles que sur le reste du territoire est à mettre en relation avec la présence d’oxydes d’azotes, « consommateurs » de l’ozone. Par conséquent, la pollution chronique vise davantage les populations vivant en milieu plus rural.

Figure 15 : Concentrations en ozone moyennes (P90.2) sur la zone PPA (2015-2017)

Tableau 11 : Evolutions des concentrations en ozone entre 2005 et 2017

<table>
<thead>
<tr>
<th>Evolution des concentrations en O₃</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Station de fond urbain Avignon Mairie</td>
<td>+7 %</td>
</tr>
<tr>
<td>PROVENCE-ALPES-CÔTE-D’AZUR</td>
<td>+5 %</td>
</tr>
</tbody>
</table>

Figure 16 : Historique des concentrations annuelles moyennes en O₃ aux stations

![Graphique des concentrations annuelles moyennes en O₃ aux stations](image)
3.2.5 Concentrations en dioxyde de soufre (SO₂)

D’une manière générale, les concentrations en SO₂ diminuent fortement depuis plusieurs dizaines d’années, en lien avec les progrès menés dans le secteur de l’industrie. Dans les grandes villes le dioxyde de soufre est peu présent en raison de la désulfurisation des fioul domestiques.

Compte tenu des faibles concentrations observées sur le réseau de surveillance de la qualité de l’air départemental (moins de 5 µg/m³ en moyenne annuelle sur l’ensemble des sites de mesures, avec une tendance à la baisse), le dioxyde de soufre ne fait plus l’objet d’un suivi en continu depuis 2004. Le département n’est pas concerné par des dépassements des seuils réglementaires pour ce polluant.

3.2.6 Concentrations en Composés Organiques Volatils (COV) : cas du benzène (C₆H₆)

Bien que de nombreux composés organiques volatils soient mesurés par AtmoSud, le benzène étant le seul réglementé actuellement, nous avons fait le choix de présenter uniquement celui-ci.

De la même manière que pour le SO₂, le benzène n’est plus mesuré sur le territoire depuis 2013, les concentrations enregistrées, en baisse, étant inférieures à l’objectif de qualité annuel, fixé à 2 µg/m³.
4. **Populations et surfaces exposées depuis la mise en œuvre du PPA**

Cette partie dresse un bilan de l’évolution des populations et des surfaces exposées à des dépassements de seuils pour les polluants cibles dans le PPA, à savoir le dioxyde de soufre (SO_2), les oxydes d’azotes (NO_x), les particules en suspension (PM), l’ozone (O_3) et les Composés Organiques Volatiles (COV) dont le benzène à l’exception des PM2.5 pour lesquelles AtmoSud ne dispose pas de cartographie spatialisée.

4.1 **Méthodologie**

La méthodologie utilisée pour évaluer les populations et les surfaces exposées à des dépassements des seuils réglementaires dans le cadre des travaux d’évaluation du PPA s’appuie sur la méthodologie nationale harmonisée définie par le LCSQA\(^5\).

► **Estimation de la population exposée**

Le calcul de la population exposée à un dépassement de seuil (valeur limite, valeur cible, objectif de long terme) se fait par croisement entre :

- une cartographie spatialisée des concentrations :
- une carte de population spatialisée :
 La spatialisation des données de population a été établie par le LCSQA [10] à partir des données des locaux d’habitation de la base MAJIC, croisées avec les bases de données de l’IGN (BD PARCELLAIRE et BD TOPO) et les statistiques de population de l’INSEE pour estimer un nombre d’habitants dans chaque bâtiment. Les données résultantes sont des nombres d’habitants par bâtiment ou des nombres d’habitants agrégés par maille.

Le calcul de la population exposée au dépassement s’effectue ainsi maille à maille ou au prorata de la surface des bâtiments comprise dans la zone de dépassement. Le nombre d’habitants exposés au dépassement est estimé au prorata des surfaces de bâtiments qui intersectent les polygones définis comme étant en dépassement.

► **Estimation de la surface de végétation / d’écosystème exposée**

Le calcul de la surface de végétation/d’écosystème exposée à un dépassement de seuil (valeur cible, objectif de long terme, niveau critique) se fait par croisement entre les cartographies spatialisées des concentrations, utilisées dans le cadre du calcul des populations exposées, et une carte d’occupation du sol spatialisée. La spatialisation des données d’occupation des sols est établie par le CRIGE-PACA\(^6\) à partir d’images satellites sur la région Provence-Alpes-Côte-d’Azur selon la nomenclature de Corine Land Cover. Le calcul de surface s’effectue ainsi maille à maille ou au prorata de la surface comprise dans la zone de dépassement.

► **Incertitudes associées aux calculs des émissions**

Comme dans toute démarche calculatoire, les estimations de populations et de surfaces exposées sont associées à des incertitudes liées :

- d’une part aux cartographies spatialisées des concentrations qui disposent d’incertitudes liées au modèle de dispersion lui-même ainsi qu’aux données d’entrées prises en compte telles que l’inventaire des émissions ;
- d’autre part, à l’occupation des sols établis à partir de données satellitaire ou au dénombrement des populations qui ne tient compte que des populations résidentes déclarées.

\(^5\) LCSQA : Laboratoire Central de Surveillance de la Qualité de l’Air

\(^6\) CRIGE PACA : Centre Régional de l’Information Géographique de Provence-Alpes-Côte d’Azur
4.2 Exposition : Evaluation de la mise en œuvre du PPA

Comme pour les émissions et les concentrations, si l’ensemble des actions du PPA dispose d’un indicateur de suivi, l’impact spécifique de chaque des actions sur l’exposition de la population n’est pas toujours évaluable. Ainsi, l’évaluation du PPA sur les populations et les surfaces exposées à des dépassements des seuils réglementaires a été réalisée de façon globale, les évolutions tiennent compte à la fois des évolutions engendrées par la mise en place des actions du PPA et des évolutions dites « tendancielles ».

Nota Bene :

4.2.1 Exposition au dioxyde d’azote (NO₂)

Alors que, sur la zone du PPA, on observe une réduction des émissions de NO₂ de l’ordre de 30 % et une réduction des concentrations en NO₂ de l’ordre 25 %, le nombre de personne exposée et la surface concernée par à un dépassement de la valeur limite en NO₂ ont peu évolué entre 2010 et 2017, les variations observées entre les différentes années sont liées à des effets de seuils.

En 2017, on estime que moins de 1 000 personnes, soit moins de 1 % de la population de la zone PPA, sont exposées à un dépassement de la valeur limite annuelle en dioxyde d’azote. Ces populations à risque se situent principalement le long des axes routiers structurants et dans les centres urbains denses comme le mettent en exergue les résultats des mesures et des modélisations d’AtmoSud (Cf. paragraphe 0).

<table>
<thead>
<tr>
<th>Tableau 12 : Populations et surface du territoire exposées à un dépassement de la valeur limite en NO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO₂</td>
</tr>
<tr>
<td>Nombre de personnes exposées à un dépassement de la valeur limite dans la zone PPA</td>
</tr>
<tr>
<td>Surface de la zone PPA concernée par un dépassement de la valeur limite (ha)</td>
</tr>
</tbody>
</table>

| Figure 17 : Pourcentage de la population de la zone PPA exposée à des niveaux en NO₂ supérieurs à la Valeur Limite |

La tendance d’exposition des populations à un dépassement de la valeur limite pour les oxydes d’azote est stable et quasi nulle depuis 2010 (moins de 1 % de la population exposée). Bien que l’objectif de réduction des émissions 2015 ne soit pas atteint, l’objectif de réduction de l’exposition des populations est atteint (objectif : moins de 1 000 résidents exposés à des dépassements).
4.2.2 Exposition aux particules en suspension de diamètre inférieur à 10 µm (PM10)

Alors que, sur la zone du PPA, on observe une réduction des émissions de PM10 de l’ordre de 20 % et une réduction des concentrations en PM10 de l’ordre de 40 %, le nombre de personne exposée et la surface concernée par à un dépassement de la valeur limite en NO₂ ont peu évolué entre 2010 et 2017, les variations observées entre les différentes années sont liées à des effets de seuils.

En 2017, on estime que moins de 1 000 personnes, soit moins de 1 % de la population de la zone PPA, sont exposées à un dépassement de la valeur limite en PM10. En raison de la multitude de sources à l’origine des particules en suspension (chauffage, circulation automobile, industries, brûlage...), les niveaux sont relativement homogènes sur l’ensemble du territoire et les dépassements sont observés dans les zones où le cumul de sources est le plus important à savoir dans les centres urbains (Cf. paragraphe 3.2.2).

Toutefois, en 2017 près de 85 % de la population, soit environ 240 000 riverains, reste exposée à des niveaux de PM10 supérieurs au seuil de recommandation sanitaire de l’OMS, plus contraignante que la valeur limite. La tendance d’exposition des populations à ce seuil est néanmoins à la baisse (-7 % entre 2010 et 2017).

| Tableau 13 : Populations et surface du territoire exposées à des dépassements pour les PM10 - valeur limite et ligne directrice OMS - |
VL	Nombre de personnes exposées à un dépassement	< 1000	18 000	32 000	< 1000	< 1000	< 1000	< 1000
	Surface de la zone PPA concernée par un dépassement (ha)	< 100	1 647	1 243	< 100	< 100	< 100	< 100
LD OMS	Nombre de personnes exposées à un dépassement	257 000	257 000	257 000	253 000	257 000	253 000	241 000
	Surface de la zone PPA concernée par un dépassement (ha)	47 091	47 091	47 267	47 258	31 911	35 097	19 779

| Figure 18 : Pourcentage de la population de la zone PPA exposée à des niveaux en PM10 supérieurs à la Valeur Limite ou la ligne directrice OMS |

Zone PPA du Vaucluse

- PM10 -
% de population exposée aux dépassements de :
- Valeur limite réglementaire UE
- Ligne Directrice de l’OMS

| Source : AtmoSud 2018 |

L’exposition des populations à un dépassement de la valeur limite en PM10 est stable et quasi nulle depuis 2010. Bien que les objectifs de réduction des émissions ne soient pas atteints, l’objectif de réduction de l’exposition des populations est atteint (objectif : moins de 1 000 résidents exposés à des dépassements).

Toutefois, si l’on s’attache aux recommandations de l’OMS, plus contraignantes, près de 85 % de la population résidente de la zone PPA reste exposée à des niveaux de PM10 importants.
4.2.3 Exposition à l’ozone (O₃)

Contrairement au NO₂ et aux PM10, au vu de l’évolution des concentrations en ozone (Cf. paragraphe 3.2.4), aucune réduction du nombre de personne exposée à un dépassement de la valeur cible annuelle de l’ozone n’est observée depuis 2010. Les fluctuations observées sont principalement fonction des conditions météorologiques estivales.

En 2017, on estime qu’environ 190 000 personnes, soit 70 % de la population de la zone PPA, sont exposées à un dépassement de la valeur cible de l’O₃ (contre 57 % en 2012 et 87 % en 2014). En raison des processus de formation de l’ozone et de son temps de vie, les niveaux sont relativement homogènes sur l’ensemble du territoire et les zones respectant la valeur cible sont à mettre en relation avec la présence d’oxydes d’azotes, « consommateurs » de l’ozone (grande agglomération, spécificité industrielle...) avec plus ou moins d’amplitude géographique selon les années.

<table>
<thead>
<tr>
<th>Nombre de personnes exposées à un dépassement de la valeur cible dans la zone PPA</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>257 241</td>
<td>257 241</td>
<td>158 879</td>
<td>257 241</td>
<td>240 486</td>
<td>249 883</td>
<td>257 493</td>
<td>189 856</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surface de la zone PPA concernée par un dépassement de la valeur cible (ha)</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>47 267</td>
<td>47 267</td>
<td>38 841</td>
<td>47 267</td>
<td>46 482</td>
<td>47 023</td>
<td>47 267</td>
<td>40 904</td>
<td></td>
</tr>
</tbody>
</table>

Figure 19 : Pourcentage de la population de la zone PPA exposée à des niveaux en O₃ supérieurs à la Valeur Cible

Aucune tendance n’est observée depuis 2010 concernant l’exposition des populations à un dépassement de la valeur cible pour l’ozone. Le nombre de personnes exposées présente de fortes variations fonctions de la météorologie estivale (entre 57 % et 93 % de personnes en fonction des années).
4.2.4 Exposition au dioxyde de soufre (SO\textsubscript{2})

Les concentrations en dioxyde de soufre ayant tellement diminuées ces dernières années (Cf. paragraphe 3.2.5) qu’AtmoSud estime que la population résidente de la zone PPA n’est pas exposée aux dépassements de valeurs limites en dioxyde de soufre.

Les populations situées sous les panaches des industries, ou dans leur environnement, peuvent toutefois être exposées à des augmentations de concentrations ponctuelles et temporaires.

4.2.5 Exposition aux Composés Organiques Volatiles (COV)

Bien que de nombreux composés organiques volatils existent, seul le benzène est réglementé et présente une valeur limite annuelle. Au regard de l’évolution des concentrations depuis 2010 (Cf. paragraphe 3.2.6), AtmoSud estime que la population résidente de la zone PPA n’est pas exposée à des dépassements de la valeur limite annuelle en benzène.

Tout comme pour le SO\textsubscript{2}, les populations situées à proximité des sources d’émissions (industrie, axes de circulation), ou dans leur environnement, peuvent toutefois être soumis à des augmentations de concentrations ponctuelles et temporaires.
5. Une amélioration des connaissances

Depuis la mise en place du PPA du Vaucluse, AtmoSud a réalisé ou a participé à des programmes/études ayant permis d’améliorer les connaissances dans le domaine de la qualité de l’air. Même si tous ces programmes de surveillance et de recherche n’ont pas été réalisés sur la zone du PPA du Vaucluse, les résultats permettent d’améliorer la connaissance générale et peuvent être transposés à d’autres zones.

De façon synthétique, les programmes de surveillance et de recherche peuvent être séparés en deux grandes thématiques :

- L’identification des sources de pollution et la quantification de leurs contributions dans les concentrations observées ;
- Surveillance de polluants non réglementé d’intérêt sanitaire.

5.1 Identification des sources de pollutions

De nombreux programmes ont été déployés pour améliorer l’identification des sources de pollution. A titre d’exemple :

- Le programme « PM sources » mené par AtmoSud et le LCE7 dans la zone industrielle de Berre montre que les particules d’origine industrielles présentent des caractéristiques granulométriques et chimiques. Elles sont majoritairement inférieures à 100 nanomètres.

 - les phénomènes de remise en suspension des poussières de roches et de sols contribuent à 15% des émissions des PM sur la station de mesures AtmoSud (Aix Art – Site de fond en zone urbaine). De la même manière, les émissions relatives au trafic atteignent 14% celles relatives au fioul lourd sont de 10% et celles de la biomasse de 12% (durant la période hivernale la combustion de biomasse devient la principale source). A noter que les contributions du secteur biogénique sont de 10% et du marin biogénique de 9%.
 - les contributions majeures à la pollution particulaire dans chaque région étudié proviennent des émissions locales. Les échanges entre les différentes régions de la zone ALCOTRA sont faibles mais peuvent être significatifs à l’occasion d’épisodes de transports particuliers.

- Le programme « 3 villes » mené par AtmoSud avec l’IGE8 et le LCE9, a permis de mettre en évidence que la composition des PM10 ne présente que très peu de différence entre les trois villes de Marseille, Nice et Port-de-Bouc. Le site de Port-de-Bouc se distingue toutefois un peu des deux autres sites du fait de sa typologie différente. En effet, Nice et Marseille sont de typologie urbaine tandis que Port-de-Bouc est un site sous influence industrielle et présente des concentrations en éléments traces métalliques plus élevées.

De plus, afin de répondre à cet enjeu majeur que constitue la pollution atmosphérique par les particules fines et ultrafines, AtmoSud et le LCE ont mis en un « super site » d’étude dédié à l’analyse en continu des propriétés physico-chimiques des particules atmosphériques submicronique (fraction pénétrant le plus profondément dans l’appareil respiratoire). Localisé au cœur du parc Longchamp de Marseille, ce site historique d’AtmoSud de type fond urbain (c’est-à-dire représentatif de l’air moyen respiré par les habitants de Marseille) a été équipé en complément des instruments nécessaires à la mesure de l’ensemble des polluants réglementés (PM10, PM2.5, O₃, NOₓ, SO₂) d’une instrumentation de dernière génération, jusqu’alors disponible uniquement dans les laboratoires de recherche.

7 LCE : Laboratoire de Chimie de l’Environnement, Aix Marseille Université, CNRS, https://lce.univ-amu.fr/
8 IGE : Institut des Géosciences de l’Environnement - CNRS, Université Grenoble Alpes (UGA), IRD, Grenoble INP - Grenoble, France 2
9 LCME : Laboratoire de Chimie Moléculaire et Environnement – Université Savoie Mont Blanc - Le Bourget du Lac, France
Cette nouvelle instrumentation, inaugurée en juin 2017, comprend :

- un ToF-ACSM (Time of Flight – Aerosol Chemical Speciation Monitor), un spectromètre de masse qui analyse en temps réel (résolution temporelle 15 min), la composition chimique de la fraction dite non réfractaire des PM1 (particules de moins de 1 µm), soit principalement la matière organique, le sulfate, le nitrate et l’ammonium.

- un Aethalomètre, installé depuis 2014 sur le site, mesure la principale fraction réfractaire : le black carbon (ou carbone suie). Ces suies émises par la combustion peuvent provenir des véhicules « fuel fossil » ou de la combustion de biomasse « wood burning ».

En combinant les mesures des deux instruments précédents, il est donc possible de déterminer en temps réel la composition chimique des PM1. Ces dernières représentent en moyenne 70 à 90% des PM2.5 (paramètre réglementé).

- un SMPS (Scanning Mobility Particle Sizer) mesure, quant à lui, le nombre de particules PM1, et leur distribution granulométrique (c'est-à-dire le nombre de particules en fonction de leur taille) dans la gamme de taille comprise entre 10 nm et 1 µm. A titre de comparaison, l'épaisseur d'un cheveu est de l'ordre de 70 µm. A l'heure actuelle, seule la masse (et non le nombre) des particules est soumise à réglementation. Cet instrument plus résolu en termes de gamme de taille vient compléter et à terme remplacer l'instrumentation (UFP 3031) déjà mis en place par AtmoSud depuis 2015.

En sus du super site, AtmoSud dispose également d'un réseau de surveillance de la granulométrie des particules et de carbone suie déployé à Port de Bouc et sur la rocade L2 à Marseille (carbone suie uniquement).

5.2 Polluants non réglementés d’intérêt sanitaire

Les populations peuvent être exposées à une multitude de polluants dans l’air ambiant qui ne sont pas tous réglementés et qui peuvent être nocifs pour la santé. C’est une des raisons pour laquelle AtmoSud s’est attachée à développer la surveillance de certains de ces polluants et notamment :

- **Les particules ultra fines (PUF)**

 Une surveillance permanente est réalisée sur le site de Marseille Longchamps et Port-de-Bouc et des focus ont pu être réalisés, notamment sur le bassin minier et industriel de Gardanne : programme PACTES-BMP et du programme de surveillance des sites ALTEO.

- **Les Polluants Organiques Persistants (POP)**

 Des focus ont été réalisés dans le cadre de la surveillance autour de la zone industrielle de l’Etang de Berre, de la Communauté de Communes du Comté de Provence ou encore de la mise en service de la centrale à biomasse d’UNIPER.

- **Les pesticides**

De plus depuis 2014, AtmoSud a mis en place un plan de surveillance spécifique : le projet POLIS, labellisé Plan Régional Santé Environnement (PRSE), qui a pour objectif d'évaluer l'exposition des populations aux polluants d'intérêt sanitaire dans la zone industrielle de l'Étang de Berre et plus largement dans la région Provence-Alpes-Côte-d'Azur. Les concentrations dans l'air ambiant de plusieurs polluants qui ne font pas partie des investigations habituelles sont mesurées : le 1,3-butanéne, l'hydrogène sulfure (H₂S), l'ammoniac (NH₃), le mercure gazeux, le 1,2-dichloroéthane (DCE), le chrome hexavalent (Cr VI). L’ensemble de ces mesures de polluants non réglementés ont permis d’alimenter une évaluation des risques sanitaire réalisée à l’échelle de 66 communes de l’étang de Berre et pour 39 substances : projet SCENARIO. Les résultats mettent en évidence des secteurs où la population est surexposée, en considérant le cumul des substances étudiées et notamment près des grands axes de transport (routes, aéroport, ports) et à proximité des industries.
5.3 Quelles sont les pistes qui restent à explorer ?

Les recherches menées depuis plusieurs années ont permis de développer des connaissances et des outils qui permettent maintenant de pouvoir déterminer les principales contributions des sources majeures à une masse d’aérosol atmosphérique. Les enjeux de ces prochaines années s’établissent dans la continuité, car si des progrès évidents ont été obtenus, plusieurs domaines restent cependant avec des questions non résolues :

- Certaines sources restent encore difficiles à appréhender, en l’absence de connaissances suffisamment précises sur les traceurs chimiques spécifiques de ces sources et notamment les sources industrielles et des émissions liées aux activités maritimes. C’est la raison pour laquelle le « super site » de Marseille Longchamp a été complété en juin 2018, par un analyseur en temps réel de métaux permettant la mesure d’une trentaine de métaux.

- Un effort devrait également être porté sur la connaissance de l’évolution des aérosols et les processus de formation secondaire des particules.

- Il serait intéressant également d’apporter des réponses sur les liens entre qualité de l’air et santé. À ce jour, les indicateurs qui font foi font appel aux concentrations massiques des PM10 ou des PM2.5. Cependant, il est clair que la chimie des particules et leur taille jouent un rôle fondamental dans leur « dangerosité », alors que ces propriétés ne sont pas retranscrites dans les mesures massiques. De nouveaux indicateurs sont en cours de développement afin de donner une mesure plus adaptée de l’impact sanitaire de la qualité de l’air.
6. Conclusions

► Quel bilan ?

Tableau 15 : Objectifs et évolutions des émissions des principaux polluants réglementés sur le territoire du PPA du Vaucluse

<table>
<thead>
<tr>
<th>ZONE PPA 84</th>
<th>Evolution 2007-2016</th>
<th>Objectifs 2015</th>
<th>Objectifs 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx</td>
<td>-31 %</td>
<td>-43 %</td>
<td>-64 %</td>
</tr>
<tr>
<td>PM10</td>
<td>-17 %</td>
<td>-29 %</td>
<td>-55 %</td>
</tr>
<tr>
<td>PM2.5</td>
<td>-21 %</td>
<td>-43 %</td>
<td>-64 %</td>
</tr>
<tr>
<td>SO2</td>
<td>-42 %</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>COVNM</td>
<td>-38 %</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Même si globalement, les moyennes annuelles relevées sur les stations de mesure baissent d’année en année et suivent la tendance régionale d’amélioration de la qualité de l’air, le territoire reste sensible vis-à-vis du dioxyde d’azote, des particules en suspension, et de l’ozone. L’ozone est présent sur le département de façon chronique, et aucune amélioration n’est observée depuis 2007. La tendance est même à une augmentation des concentrations enregistrées aux stations. Cette situation amène en été des dépassements réguliers des seuils d’information et de recommandation pour l’ozone. En hiver, ce sont les seuils (valeur journalière) de PM10 qui sont encore régulièrement dépassés.

En 2017, il reste très peu de personnes (<1000) exposées au dépassement des valeurs limites de NO₂ et PM10 sur la zone PPA. Néanmoins, 239 000 personnes restent exposées au dépassement de la norme OMS pour les particules PM10. Enfin, 190 000 personnes sont exposées aux dépassements de la valeur cible pour l’ozone.

Ces différents éléments plaident pour un maintien, voire un renforcement de la vigilance et des actions entreprises dans l’optique de respecter les objectifs du plan d’ici à fin 2019.

L’impact des actions seules du PPA n’a pas été évalué dans ce rapport ; des données précises nécessaires à la quantification n’étant pas disponibles. Pour le prochain PPA, il sera important, de définir, dès la phase d’élaboration, et avec l’ensemble des acteurs, des indicateurs de suivi pertinents et fiables de mise en œuvre des actions. Cela n’empêche pas de mettre en œuvre des actions non quantifiables dans le PPA, mais il faudra clairement les identifier comme telles en amont. D’autres actions n’ont pas été évaluées, car elles n’ont pas été mise en œuvre ou pas suffisamment. Pourtant la satisfaction des objectifs des PPA suppose, outre le fait d’agir sur les principales sources d’émissions, de mettre en œuvre l’ensemble les actions proposées.
► Quels enjeux perdurent ?

En plus de la problématique liée aux polluants réglementés NOx, PM10 et PM2.5, qui reste d’actualité, les populations du territoire PPA sont exposées à des polluants qui peuvent être nocifs pour la santé mais qui ne sont pas réglementés dans l’air ambiant. Parmi ceux-ci, on peut notamment citer les polluants atmosphériques d’intérêt sanitaire suivants : les particules ultra fines (PUF) ou PM1, les polluants organiques persistants, certains COV et les pesticides. Des campagnes de mesures ont été menées dans ce sens ces dernières années (Projet POLIS et Observatoire des résidus de pesticides), elles permettent de prioriser les zones à enjeux, essentiellement autour des grands axes de transport et à proximité des industries. Les combustions des chauffages au bois et des brûlages sont également des sources présentes sur la zone du PPA du Vaucluse, susceptibles de dégrader régulièrement la qualité de l’air.

Enfin, l’ozone, dont les concentrations dans l’air ne diminuent pas depuis 2007, constitue une problématique persistante sur un territoire soumis à un ensoleillement favorable à sa formation.

► Leviers d’action sur le territoire du Vaucluse

Les leviers d’améliorations passent par des approches globales à l’échelle du département ou spécifiques et sont inscrites dans les orientations du Plan Régional de Surveillance de la Qualité de l’air d’AtmoSud :

- Transports : réduire l’usage de la voiture, accentuer les modes actifs, les transports en commun, le covoiturage, et améliorer le transport des marchandises. La densité du trafic routier dans les zones fortement peuplées constitue une priorité ;
- Industries : poursuivre les avancées technologiques pour limiter l’impact environnemental “air” tout en développant l’activité économique ;
- Aménagement du territoire, urbanisation et habitat : prendre en compte les enjeux air, climat et énergie dans les politiques via l’ensemble des schémas et plans de développement territoriaux ;
- Proposer des solutions en termes d’aménagement pour les éco-cités, pour y faire entrer de « l’air propre » : réflexion à l’échelle de la rue, scénarios, impact de trames de circulation, place de la voiture ;
- Identifier l’exposition initiale aux polluants dans les projets d’implantation des Etablissements recevant du Public notamment la population dite sensible (enfants, personnes âgées, personnes malades), afin de ne pas exposer davantage ces populations à une qualité de l’air pouvant à terme dégrader leur santé ;
- La sensibilisation et les préconisations sont indispensables pour réduire les émissions de particules issues de la combustion de biomasse, du chauffage et du brûlage des déchets verts, très présentes sur le territoire : porter à connaissance l’arrêté d’emploi du feu. Tenir compte de la réutilisation possible de cette ressource ;
- Air intérieur : politiques en faveur de techniques et de matériaux moins polluants dans les bâtiments ;
- Prendre en compte les zones fragiles ou polluées : centres villes, environnements industriels, en développant notamment des programmes de surveillance adaptés aux contextes : programme industriel et en ciblant les thématiques à approfondir en terme de connaissance : polluants d’intérêt sanitaires et non réglementés, connaissance des particules ultrafines, chimiquement, en masse et en nombre ;
- Communication/sensibilisation : porter à connaissance des élus, de la population, du jeune public et des personnes sensibles. Innover en intégrant la place du numérique (quartiers connectés).
BIBLIOGRAPHIE

GLOSSAIRE
Définitions

Lignes directrices OMS : Seuls de concentration définis par l’OMS et basés sur un examen des données scientifiques accumulées. Elles visent à offrir des indications sur la façon de réduire les effets de la pollution de l’air sur la santé. Elles constituent des cibles à atteindre qui confère une protection suffisante en termes de santé publique.

Maximum journalier de la moyenne sur huit heures : Il est sélectionné après examen des moyennes glissantes sur huit heures, calculées à partir des données horaires et actualisées toutes les heures. Chaque moyenne sur huit heures ainsi calculée est attribuée au jour où elle s’achève ; autrement dit, la première période considérée pour le calcul sur un jour donné sera la période comprise entre 17 h la veille et 1 h le jour même ; la dernière période considérée pour un jour donné sera la période comprise entre 16 h et minuit le même jour.

Pollution de fond et niveaux moyens : La pollution de fond correspond à des niveaux de polluants dans l’air durant des périodes de temps relativement longues. Elle s’exprime généralement par des concentrations moyennées sur une année (pour l’ozone, on parle de niveaux moyens exprimés généralement par des moyennes calculées sur huit heures). Il s’agit de niveaux de pollution auxquels la population est exposée le plus longtemps et auxquels il est attribué l’impact sanitaire le plus important.

Pollution de pointe : La pollution de pointe correspond à des niveaux de polluants dans l’air durant des périodes de temps courtes. Elle s’exprime généralement par des concentrations moyennées sur la journée ou l’heure.

Procédures préfectorales : Mesures et actions de recommandations et de réduction des émissions par niveau réglementaire et par grand secteur d’activité.

Seuil d’alerte à la population : Niveau de concentration de substances polluantes dans l’atmosphère, au-delà duquel une exposition de courte durée présente un risque pour la santé humaine ou la dégradation de l’environnement, justifiant l’intervention de mesures d’urgence.

Seuil d’information-recommandations à la population : Niveau de concentration de substances polluantes dans l’atmosphère, au-delà duquel une exposition de courte durée présente un risque pour la santé humaine des groupes particulièrement sensibles de la population, rendant nécessaires des informations immédiates et adéquates.

Objectif de qualité : n niveau de concentration à atteindre à long terme, sauf lorsque cela n’est pas réalisable par des mesures proportionnées, afin d’assurer une protection efficace de la santé humaine et de l’environnement.

Valeur cible : Un niveau de concentration fixé dans le but d’éviter, de prévenir ou de réduire les effets nocifs sur la santé humaine et/ou l’environnement dans son ensemble, à atteindre dans la mesure du possible sur une période donnée.

Valeur limite : Un niveau de concentration fixé sur la base des connaissances scientifiques, dans le but d’éviter, de prévenir ou de réduire les effets nocifs sur la santé humaine et/ou l’environnement dans son ensemble, à atteindre dans un délai donné et à ne pas dépasser une fois atteint.

Couche limite : Couche atmosphérique en contact direct avec la surface terrestre, dans laquelle se produisent des modifications d’un point de vue dynamique et thermique. Son épaisseur varie d’une centaine de mètres à quelques kilomètres selon les caractéristiques du sol (rugosité, relief, ...), la saison (humidité, flux de chaleur, température).

Particules d’origine secondaires : Les particules secondaires résultent de la conversion en particules, des gaz présents dans l’atmosphère. Cette conversion, soit directement gaz-solide, soit par l’intermédiaire des gouttes d’eau, est appelée nucléation. La nucléation est le mécanisme de base de la formation des nouvelles particules dans l’atmosphère. Les principaux précurseurs impliqués dans la formation des particules secondaires sont le dioxyde de soufre (SO2), les oxydes d’azote (NOx et nitrates), les composés organiques volatils (COV) et l’ammoniac (NH3). Les particules secondaires sont essentiellement des particules fines (<2.5 μm).

AOT 40 : Égal à la somme des différences entre les concentrations horaires d’ozone supérieures à 80 μg/m3 (mesurés quotidiennement entre 8 h et 20 h, heure d’Europe Centrale) et la valeur 80 μg/m3 pour la période du 1er mai au 31 juillet de l’année N. La valeur cible de protection de la végétation est calculée à partir de la moyenne sur 5 ans de l’AOT40. Elle s’applique en dehors des zones urbanisées, sur les Parcs Nationaux, sur les Parcs Naturels Régionaux, sur les réserves Naturelles Nationales et sur les zones arrêtées de Protection de Biotope.

Percentile 99,8 (P 99,8) : Valeur respectée par 99,8 % des données de la série statistique considérée (ou dépassée par 0,2 % des données). Durant l’année, le percentile 99,8 représente dix-huit heures.
Sigles

AASQA : Association Agrées de Surveillance de la Qualité de l’Air
ADEME : Agence de l’environnement et de la maîtrise de l’énergie
ANTS : Association Nationale des Techniques Sanitaires
ARS : Agence Régionale de Santé
CSA : Carte Stratégique Air
CERC : Cellule Économique Régionale du BTP Provence-Alpes-Côte-d’Azur
DRAAF : Direction Régionale de l’Alimentation, de l’Agriculture et de la Forêt de la région Provence-Alpes-Côte-d’Azur
DREAL : Direction Régionale de l’Environnement, de l’Aménagement et du Logement
EPCI : Etablissement Public de Coopération Intercommunale
EQAIR : Réseau Expert Qualité de l’Air intérieur en région Provence-Alpes-Côte-d’Azur
IARC : International Agency for Research on Cancer
ISA : Indice Synthétique Air
LCSQA : Laboratoire Central de Surveillance de la Qualité de l’Air
OMS : Organisation Mondiale de la Sante
ORP PACA : Observatoire des résidus de Pesticides en région Provence-Alpes-Côte-d’Azur
PCAET : Plan climat air énergie territorial
PDU : Plan de Déplacements Urbains
PLU : Plan local d’Urbanisme
PPA : Plan de Protection de l’Atmosphère
PPSA : Plan Régional de Surveillance de la qualité de l’Air
SCoT : Schéma de Cohérence Territoriale
ZAS : Zone Administrative de Surveillance

Unité de mesures

mg/m³ : milligramme par mètre cube d’air
(1 mg = 10⁻³ g = 0,001 g)
μg/m³ : microgramme par mètre cube d’air
(1 μg = 10⁻⁶ g = 0,000001 g)
ng/m³ : nanogramme par mètre cube d’air
(1 ng = 10⁻⁹ g = 0,000000001 g)
TU : Temps Universel

Polluants

As : Arsenic
B(a)P : Benzo(a)Pyrène
BTEX : Benzène - Toluène - Éthylbenzène - Xylènes
C₆H₆ : Benzène
Cd : Cadmium
CO : Monoxyde de carbone
CO₂ : Dioxyde de carbone
COV : Composés Organiques Volatils
COVNM : Composés Organiques Volatils Non Méthaniques
HAP : Hydrocarbures aromatiques polycycliques
ML : Métaux lourds (Ni, Cd, Pb, As)
Ni : Nickel
NO / NO₂ : Monoxyde d’Azote / Dioxyde d’azote
NOx : Oxydes d’azote
O₃ : Ozon
Pb : Plomb
PM non volatile : Fraction des particules en suspension présente dans l’air ambiant qui ne s’évapore pas à 50°C.
PM volatile : Fraction des particules en suspension qui s’évaporent entre 30°C et 50°C. Cette fraction des particules est mesurée depuis 2007.
PM 10 : Particules d’un diamètre < 10 μm
PM 2,5 : Particules d’un diamètre < 2,5 μm
SO₂ : Dioxyde de soufre
Classification des sites de mesures

Environnement d’implantation

- **Implantation urbaine** : Elle correspond à un emplacement dans une zone urbaine bâtie en continu, c’est-à-dire une zone urbaine dans laquelle les fronts de rue sont complètement (ou très majoritairement) constitués de constructions d’au minimum deux étages.
- **Implantation périurbaine** : Elle correspond à un emplacement dans une zone urbaine majoritairement bâtie, constituée d’un tissu continu de constructions isolées de toutes tailles, avec une densité de construction moindre.
- **Implantation rurale** : Elle est principalement destinée aux stations participant à la surveillance de l’exposition de la population et des écosystèmes à la pollution atmosphérique de fond, notamment photochimique.

Influence des sources

- **Influence Industrielle** : Le point de prélèvement est situé à proximité d’une source (ou d’une zone) industrielle. Les émissions de cette source ont une influence significative sur les concentrations.
- **Influence Trafic** : Le point de prélèvement est situé à proximité d’un axe routier majeur. Les émissions du trafic ont une influence significative sur les concentrations.
- **Influence de Fond** : Le point de prélèvement n’est soumis à aucun des deux types d’influence décrits ci-après. L’implantation est telle que les niveaux de pollution sont représentatifs de l’exposition moyenne de la population (ou de la végétation et des écosystèmes) en général au sein de la zone surveillée. Généralement, la station est représentative d’une vaste zone d’au moins plusieurs km².
ANNEXES
ANNEXE 1 Communes intégrées dans le périmètre du PPA du Vaucluse

<table>
<thead>
<tr>
<th>DEPARTEMENT DU VAUCLUSE (16 COMMUNES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTHENS-DES-PALUDS</td>
</tr>
<tr>
<td>AUBIGNAN</td>
</tr>
<tr>
<td>AVIGNON</td>
</tr>
<tr>
<td>BEDARRIDES</td>
</tr>
<tr>
<td>CARPENTRAS</td>
</tr>
<tr>
<td>ENTRAIGUES-SUR-LA-SORGUE</td>
</tr>
<tr>
<td>JONQUERETTES</td>
</tr>
<tr>
<td>LORIOL-DU-COMTAT</td>
</tr>
<tr>
<td>MONTEUX</td>
</tr>
<tr>
<td>MORIERES-LES-AVIGNON</td>
</tr>
<tr>
<td>PERNES-LES-FONTAINES</td>
</tr>
<tr>
<td>LE PONTET</td>
</tr>
<tr>
<td>SAINT-SATURNIN-LES-AVIGNON</td>
</tr>
<tr>
<td>SARRIANS</td>
</tr>
<tr>
<td>SORGUES</td>
</tr>
<tr>
<td>VEDENE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEPARTEMENT DES BOUCHES-DU-RHÔNE (4 COMMUNES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BARBENTANE</td>
</tr>
<tr>
<td>ROGNONAS</td>
</tr>
<tr>
<td>CHATEAURENARD</td>
</tr>
<tr>
<td>EYRAGUES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEPARTEMENT DU GARD (2 COMMUNES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LES ANGLES</td>
</tr>
<tr>
<td>VILLENUEVE-LES-AVIGNON</td>
</tr>
</tbody>
</table>
ANNEXE 2
Sources de pollution, effets sur la santé, règlementation et recommandations OMS

Sources de pollution

Les polluants atmosphériques ont diverses origines.

<table>
<thead>
<tr>
<th>Polluants</th>
<th>Sources principales</th>
</tr>
</thead>
</table>
| **O₃**
Ozone | L’ozone (O₃) n’est pas directement rejeté par une source de pollution. C’est un polluant secondaire formé à partir des NOₓ et des COV. |
| **Particules en suspension (PM)** | Les particules proviennent en majorité de la combustion à des fins énergétiques de différents matériaux (bois, charbon, pétrole), du transport routier (imbrûlés à l’échappement, usure des pièces mécaniques par frottement, des pneumatiques...), d’activités industrielles très diverses (sidérurgie, incinération, chaufferie) et du brûlage de la biomasse (incendie, déchets verts). |
| **NOₓ**
Oxydes d’azote | Les sources principales sont les véhicules et les installations de combustion. |
| **SO₂**
Dioxyde de soufre | Le dioxyde de soufre (SO₂) est un polluant essentiellement industriel. Les sources principales sont les centrales thermiques, les grosses installations de combustion industrielles, le trafic maritime, l’automobile et les unités de chauffage individuel et collectif. |
| **COV dont le benzène**
Composés organiques volatils | Les COV proviennent de sources mobiles (transports), de procédés industriels (industries chimiques, raffinage de pétrole, stockage et distribution de carburants et combustibles liquides, stockages de solvants). Certains COV, comme les aldéhydes, sont émis par l’utilisation de produits d’usage courant : panneaux de bois en aggloméré, certaines mousses pour l’isolation, certains vernis, les colles, les peintures, les moquettes, les rideaux, les désinfectants... D’autres COV sont également émis naturellement par les plantes. |
| **HAP**
Hydrocarbures Aromatiques Polycycliques | Les HAP se forment par évaporation mais sont principalement rejetés lors de la combustion de matière organique. La combustion domestique du bois et du charbon s’effectue souvent dans des conditions mal maîtrisées (en foyer ouvert notamment), qui entraînent la formation de HAP. |
| **CO**
Monoxyde de carbone | Combustion incomplète (mauvais fonctionnement de tous les appareils de combustion, mauvaise installation, absence de ventilation), et ce quel que soit le combustible utilisé (bois, butane, charbon, essence, fuel, gaz naturel, pétrole, propane). |
Effets sur la santé

Les polluants atmosphériques ont un impact sur la santé variable en fonction de leur concentration dans l’air, de la dose inhalée et de la sensibilité des individus. Ils peuvent aussi avoir des incidences sur l’environnement.

<table>
<thead>
<tr>
<th>Polluants</th>
<th>Effets sur la santé</th>
<th>Effets sur l’environnement</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₃ Ozone</td>
<td>- irritation des yeux</td>
<td>- agression des végétaux</td>
</tr>
<tr>
<td></td>
<td>- diminution de la fonction respiratoire</td>
<td>- dégradation de certains matériaux</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- altération de la photosynthèse et de la respiration des végétaux</td>
</tr>
<tr>
<td>PM Particules en suspension</td>
<td></td>
<td>- effets de salissures sur les bâtiments</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- altération de la photosynthèse</td>
</tr>
<tr>
<td>NOₓ Oxydes d’azote</td>
<td>- irritation des voies respiratoires</td>
<td>- pluies acides</td>
</tr>
<tr>
<td></td>
<td>- dans certains cas, altération des fonctions pulmonaires</td>
<td>- précurseur de la formation d’ozone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- effet de serre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- déséquilibre les sols sur le plan nutritif</td>
</tr>
<tr>
<td>SO₂ Dioxyle de soufre</td>
<td></td>
<td>- pluies acides</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- dégradation de certains matériaux</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- dégradation des sols</td>
</tr>
<tr>
<td>COV dont le benzène Composés organiques volatils</td>
<td>- toxicité et risques d’effets cancérigènes ou mutagènes, en fonction du composé concerné</td>
<td>- formation de l’ozone</td>
</tr>
<tr>
<td>HAP Hydrocarbures Aromatiques Polycycliques</td>
<td></td>
<td>- peu dégradables</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- déplacement sur de longues distances</td>
</tr>
<tr>
<td>Métaux lourds</td>
<td>- toxicité par bioaccumulation</td>
<td>- contamination des sols et des eaux</td>
</tr>
<tr>
<td>CO Monoxyde de carbone</td>
<td>- prend la place de l’oxygène</td>
<td>- formation de l’ozone</td>
</tr>
<tr>
<td></td>
<td>- provoque des maux de tête</td>
<td>- effet de serre</td>
</tr>
<tr>
<td></td>
<td>- létal à concentration élevée</td>
<td></td>
</tr>
</tbody>
</table>
Réglementation

En matière de surveillance de la qualité de l’air, la réglementation se base essentiellement sur :

- La directive 2008/50/CE concernant la qualité de l’air ambiant et un air pur pour l’Europe,
- La directive 2004/107/CE concernant l’arsenic, le cadmium, le mercure, le nickel et les hydrocarbures aromatiques polycycliques dans l’air ambiant,
- L’article R221-1 du Code de l’Environnement.

Les valeurs réglementaires sont exprimées en µg/m³. L’expression du volume doit être ramenée aux conditions de température et de pression suivantes : 293 K et 1013 hPa. La période annuelle de référence est l’année civile. Un seuil est considéré dépassé lorsque la concentration observée est strictement supérieure à la valeur du seuil.

<table>
<thead>
<tr>
<th>Polluants</th>
<th>Type de réglementation</th>
<th>Valeurs réglementaires (µg/m³)</th>
<th>Durée d’exposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₃ Ozone</td>
<td>Seuil d’information- recommandations</td>
<td>180</td>
<td>Heure</td>
</tr>
<tr>
<td></td>
<td>Seuil d’alerte</td>
<td>240</td>
<td>Heure</td>
</tr>
<tr>
<td></td>
<td>Valeur cible</td>
<td>120</td>
<td>Maximum journalier de la moyenne sur 8 heures (maximum 25 j / an)</td>
</tr>
<tr>
<td></td>
<td>Objectif de qualité</td>
<td>120</td>
<td>8 heures</td>
</tr>
<tr>
<td>PM10 Particules</td>
<td>Seuil d’information- recommandations</td>
<td>50</td>
<td>Jour</td>
</tr>
<tr>
<td></td>
<td>Seuil d’alerte</td>
<td>80</td>
<td>Jour</td>
</tr>
<tr>
<td></td>
<td>Valeurs limites</td>
<td>50</td>
<td>Jour (maximum 35 j / an)</td>
</tr>
<tr>
<td></td>
<td>Objectif de qualité</td>
<td>30</td>
<td>Année</td>
</tr>
<tr>
<td>PM2.5 Particules</td>
<td>Seuil d’information- recommandations</td>
<td>200</td>
<td>Heure</td>
</tr>
<tr>
<td></td>
<td>Seuil d’alerte</td>
<td>400</td>
<td>Heure</td>
</tr>
<tr>
<td></td>
<td>Valeurs limites</td>
<td>200</td>
<td>Heure (maximum 18h / an)</td>
</tr>
<tr>
<td></td>
<td>Objectif de qualité</td>
<td>10</td>
<td>Année</td>
</tr>
<tr>
<td>NO₂ Dioxyle d’azote</td>
<td>Seuil d’information- recommandations</td>
<td>300</td>
<td>Heure</td>
</tr>
<tr>
<td></td>
<td>Seuil d’alerte</td>
<td>500</td>
<td>Heure (pendant 3h)</td>
</tr>
<tr>
<td></td>
<td>Valeurs limites</td>
<td>350</td>
<td>Heure (maximum 24h / an)</td>
</tr>
<tr>
<td></td>
<td>Objectif de qualité</td>
<td>125</td>
<td>Jour (maximum 3 j / an)</td>
</tr>
<tr>
<td>SO₂ Dioxyle de soufre</td>
<td>Seuil d’information- recommandations</td>
<td>50</td>
<td>Année</td>
</tr>
<tr>
<td></td>
<td>Seuil d’alerte</td>
<td>50</td>
<td>Année</td>
</tr>
<tr>
<td></td>
<td>Valeurs limites</td>
<td>50</td>
<td>Année</td>
</tr>
<tr>
<td></td>
<td>Objectif de qualité</td>
<td>2</td>
<td>Année</td>
</tr>
<tr>
<td>C₆H₆ Benzène</td>
<td>Valeur limite</td>
<td>5</td>
<td>Année</td>
</tr>
<tr>
<td></td>
<td>Objectif de qualité</td>
<td>2</td>
<td>Année</td>
</tr>
<tr>
<td>Pb Plomb</td>
<td>Valeur limite</td>
<td>0,5</td>
<td>Année</td>
</tr>
<tr>
<td></td>
<td>Objectif de qualité</td>
<td>0,25</td>
<td>Année</td>
</tr>
<tr>
<td>CO Monoxyde de carbone</td>
<td>Valeur limite</td>
<td>10 000</td>
<td>8 heures</td>
</tr>
<tr>
<td>BaP Benzo(a)pyrène</td>
<td>Valeur cible</td>
<td>0,001</td>
<td>Année</td>
</tr>
<tr>
<td>As Arsenic</td>
<td>Valeur cible</td>
<td>0,006</td>
<td>Année</td>
</tr>
<tr>
<td>Cd Cadmium</td>
<td>Valeur cible</td>
<td>0,005</td>
<td>Année</td>
</tr>
<tr>
<td>Ni Nickel</td>
<td>Valeur cible</td>
<td>0,02</td>
<td>Année</td>
</tr>
</tbody>
</table>
Recommandations de l’Organisation Mondiale pour la Santé (OMS)

Il s’agit de niveaux d’exposition (concentration d’un polluant dans l’air ambiant pendant une durée déterminée) auxquels ou en dessous desquels il n’y a pas d’effet sur la santé. Ceci ne signifie pas qu’il y ait un effet dès que les niveaux sont dépassés mais que la probabilité qu’un effet apparaîse est augmentée.

<table>
<thead>
<tr>
<th>Polluants</th>
<th>Effets considérés sur la santé</th>
<th>Valeur (µg/m³) recommandée par l’OMS</th>
<th>Durée moyenne d’exposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₃ Ozone</td>
<td>- impact sur la fonction respiratoire</td>
<td>100</td>
<td>8 heures</td>
</tr>
<tr>
<td>PM 10 Particules</td>
<td>- affection des systèmes respiratoire et cardiovasculaire</td>
<td>50</td>
<td>24 heures 1 an</td>
</tr>
<tr>
<td>PM 2.5 Particules</td>
<td>- faible altération de la fonction pulmonaire (asthmatiques)</td>
<td>25</td>
<td>24 heures 1 an</td>
</tr>
<tr>
<td>NO₂ Dioxyle d’azote</td>
<td>- altération de la fonction pulmonaire (asthmatiques)</td>
<td>200</td>
<td>1 heure 1 an</td>
</tr>
<tr>
<td>SO₂ Dioxyle de soufre</td>
<td>- exacerbation des voies respiratoires (individus sensibles)</td>
<td>500</td>
<td>10 minutes 24 heures</td>
</tr>
<tr>
<td>Pb Plomb</td>
<td>- niveau critique de plomb dans le sang < 10 – 150 g/l</td>
<td>0,5</td>
<td>1 an</td>
</tr>
<tr>
<td>Cd Cadmium</td>
<td>- impact sur la fonction rénale</td>
<td>0,005</td>
<td>1 an</td>
</tr>
<tr>
<td>CO Monoxyde de carbone</td>
<td>- niveau critique de CO Hb < 2,5 % - Hb : hémoglobine</td>
<td>100 000</td>
<td>15 minutes</td>
</tr>
</tbody>
</table>
UNE AMÉLIORATION DE LA QUALITÉ DE L’AIR SUR LA ZONE DU PLAN DE PROTECTION DE L’ATMOSPHÈRE DU VAUCLUSE
Agglomération d’Avignon – 2014-2019

Une amélioration de la qualité de l’air sur la zone du Plan de Protection de l’Atmosphère (PPA) du Vaucluse a été constatée entre 2007 et 2017 mais celle-ci ne permet pas d’atteindre les objectifs de réduction des émissions fixés pour 2020 dans le cadre du PPA même si la population exposée aux dépassements de valeur limite est très limitée.

Le PPA du Vaucluse arrivant à échéance en 2019, une évaluation annuelle du plan est réalisée. Pour cela, AtmoSud vérifie si les objectifs de réduction des émissions sont atteints et dresse un bilan de l’évolution de la qualité de l’air. L’évaluation a été réalisée de façon globale en tenant compte à la fois des mesures du PPA et des évolutions dites « tendancielles » intégrant notamment les évolutions structurelles et technologiques.

De la même manière, les concentrations des différents polluants considérés et la population résidente exposée aux dépassements de seuils réglementaires diminuent sensiblement à l’exception de l’ozone, polluant secondaire, pour lequel les concentrations augmentent depuis 2007.

Des dépassements des seuils réglementaires et sanitaires (plus contraignants) sont toujours observés dans les zones où les sources sont les plus nombreuses, à savoir dans les centres urbains où la densité urbaine combinée au trafic routier est la plus importante.

Au regard des résultats de l’évaluation, il semble pertinent de :

- compléter les actions définies dans le plan sur l’ensemble des polluants considérés pour envisager de respecter les objectifs 2020 ;
- définir des objectifs chiffrés sur les polluants d’intérêt sanitaire (composés organiques volatils, pesticides, PM1…) ;
- adapter les objectifs pour permettre la prise en compte des seuils sanitaires en sus des valeurs limites réglementaires.