Réponse de la forêt à des scénarios de sécheresse appliqués à moyen et long termes en milieu naturel : étude des COVB du chêne pubescent, principal émetteur d’isoprène en région méditerranéenne

Thèse de Amélie Saunier soutenue le 16 mai 2016
Sous la direction de Catherine Fernandez & Elena Ormeño

Présentée par E Ormeno pour le CS d’Air PACA le 18 déc 2017
Climate change influences BVOC emissions with eventual impacts on atmospheric pollution and +/- feedbacks on climate.

Plants release to the atmosphere 1-30% of the CO₂ as BVOC.

BVOC confer protection against stress (e.g. high temperatures).
In the Mediterranean region, warming will be coupled to drought during summer. How aggravated and recurrent drought influences BVOC emissions in situ is only known for monoterpene emissions \textit{(Quercus ilex, Study performed at CEFE Montpelier)}. Giorgi and Lionello 2008; Somot et al, 2008; IPCC 2013.
Objectifs

Evaluate the impact of **recurrent aggravated drought over years** on highly volatile BVOCs, in a highly representative Mediterranean forest.

- Isoprene but also <C5 volatiles, In collaboration with LCE (Massalya)
- Downy oak forest (*Quercus pubescens*)

Estimate Downy oak contribution to O$_3$ formation at a regional scale under different drought scenarios.

- Collaboration with AIR PACA, LSCE.
Why Downy oak (*Quercus pubescens*)?

- This deciduous species occupies 2 millions ha in Europe and 418 000 ha in Southern France (especially PACA, Rhône-Alpes and Languedoc-Roussillon, Bonin & Romane, 1996)

- The highest isoprene emitter in the Mediterranean area & the 2nd most important in Europe (Simon *et al.* 2005; Keenan *et al.* 2009, travaux de thèse d’Anne-Cyrielle Génard)

Occurrence of Downy Oak in the North Mediterranean Bassin

Occurrence of Downy Oak in France

Quézel and Médail, 2003

Inventaire Forestier National
O₃HP: Oak Observatory at OHP

- Experimental study with a rain exclusion system that allowed to remove ~30% natural rain (33-35%) since may 2012.
- Two plots: natural drought plot & recurrent drought plot
Measurements over the seasonal cycle (3 times/year)
- 3rd year of recurrent drought => humid year (2014)
- 4th year of recurrent drought => dry year (2015)

On-line BVOC emissions PTR-ToF-MS (screening 10 < m/z < 500), in collaboration with LCE-MASSALYA (B. Temime-Roussel, H Wotham)
- Isoprene
- Isoprene degradation products (MVK, MACR, ISOPOOH)
- Methanol
- Formaldehyde
- Acetaldehyde
- Acetone
<table>
<thead>
<tr>
<th>Context</th>
<th>Objectifs</th>
<th>M&M</th>
<th>Results & Discussion</th>
<th>Conclusion</th>
</tr>
</thead>
</table>

Collaboration with UMS OHP LSCE

Programs that have allowed to build up these chambers (chronological order):
ANR CANOPEE (2010-2013)
EC2CO-ICRAM (2012)
ANR-Sec-Prime (2012-2017)
Seasonal course of isoprene emissions under recurrent aggravated drought and natural drought

- Very high emission rate of Downy oak → Is = 120 µgC.gDM⁻¹.h⁻¹
- Isoprene emission reduction under recurrent aggravated drought (80 µgC.gDM⁻¹.h⁻¹) → SCENARIO DOWN
- Similar isoprene emission rates in 2014 and 2015 despite the higher dryness in 2015
Daily course of isoprene emissions in summer under recurrent aggravated drought and natural drought

- **2014 (3rd year of rain restriction)**
 - Aggravated drought
 - Natural drought

- **2015 (4th year of rain restriction)**
 - Aggravated drought
 - Natural drought

- Significant isoprene emission reduction under recurrent aggravated drought
Opposite results during some months of the 1st year of rain restriction (2012-2013, PhD AC Genard)

- Significant isoprene emission increase in August under recurrent aggravated drought → SCENARIO UP

Figure under review
What are the consequences of drought – related isoprene changes on O₃: modelling approach

Collaboration with AIR PACA, O₃ assessment in PACA using CHIMERE

Period for assessing [isoprene]_{atm} and O₃: été 2003 (heat-wave + high O₃)

3 scenarios:

Scenario REF
EF ~68 µgC.g_{MS}^{-1}.h^{-1} (MEGAN)

Scenario UP
reflects the ↗ isoprene under short term rain restriction
+83% (August data in 2012, EF~140, AC Genard PhD, Biogeosciences under review)

Scenario DOWN
reflects the ↘ isoprene under recurrent rain restriction
+ 26% (July data 2014, Saunier et al., Frontiers in Plant Science 2017)
Assessing Downy oak contribution to atmospheric isoprene in the PACA region under different drought scenarios

Contexte

Objectifs

M&M

Results & Discussion

Conclusions

REF (natural drought)

Scenario UP (aggravated drought for 1 year or short-term)

Scenario DOWN (aggravated drought for 3-4 years, longer term)

HA = Hautes Alpes, AHP = Alpes de Haute Provence, VAU = Vaucluse, VAR = Var, AM = Alpes Maritimes, BR = Bouches du Rhône

$\uparrow [\text{isoprene}]_{\text{atm}}$ $\downarrow [\text{isoprene}]_{\text{atm}}$
Consequences for Downy oak contribution to O\textsubscript{3} in the PACA region under different drought scenarios

Contexte Objectifs M&M

Results & Discussion

Conclusions

REF (natural drought)

Scenario UP (aggravated drought for 1 year (short-term))

Scenario DOWN (aggravated drought for 3-4 years, long-term)

HA = Hautes Alpes, AHP = Alpes de Haute Provence, VAU = Vaucluse, VAR = Var, AM = Alpes Maritimes, BR = Bouches du Rhône

\[[O_3]_{atm} \uparrow \]

\[[O_3]_{atm} \downarrow \]
• Isoprene emissions are highly dependent on drought, with changes varying with drought intensity, season and time scale.

• Ponctual and recurrent drought modifies the global O₃ budget in the PACA Region, with opposite results.

• Ongoing modelling in collaboration with AIR PACA is necessary in order to model O₃:
 • taking into account the real emission factor of Downy oak under natural drought since:
 actual EF~68, while real EF_{summer}~ 80 μgC g_{DM}^{-1} h^{-1} in 2012 and 120 μgC g_{DM}^{-1} h^{-1} in 2014 & 2015
 • integrating the seasonal course of isoprene emissions
 • during periods different than 2003
 • including maps about background O₃ pollution (O₃ > 120 μg.m⁻³.8h⁻¹) and peak O₃ (μg.m⁻³.h⁻¹)
 • regular meetings with AIR PACA (A Armangaud, D Piga) (every 6 months)
Thanks for your attention
Diagrammes ombrothermiques :

Précipitations (mm) et Températures (°C) pour les années 2012 à 2015.

Sécheresse naturelle et aggravée.

Précipitations (mm) et Températures (°C) pour les mois de janvier à décembre.
Précipitations cumulées :

2014

1167 mm

753 mm

2015

598 mm

395 mm

Moyenne précipitations = 830 mm
(calculée sur la période 1967-2000)

2014 = année humide
2015 = année sèche

Santonja et al. (2015); Saunier et al.