


Maximum horaire O<sub>s</sub> du 15 juillet 2006 (ref)





# IMPACT DE LA REDUCTION DE VITESSE SUR LA POLLUTION PAR L'OZONE

SIÈGE SOCIAL

Le Noilly Paradis 146 rue Paradis – 13294 Marseille cedex 06

Tél.: 04 91 32 38 00

ETABLISSEMENT DE NICE

Nice Leader - Tour Hermès - DRIRE 64-66 route de Grenoble 06200 Nice Tél.: 04 93 18 88 00

Date de publication : [09/2010] Numéro de projet : 03SIM06R

# RESUME

Cette étude a pour objectif de déterminer l'impact de mesures de réduction de la vitesse de circulation sur la qualité de l'air : réduction de 30 km/h avec un minimum de 70 km/h.

Dans un premier temps, les émissions résultant de ce scénario ont été calculées et comparées à la situation initiale de référence (inventaire PACA 2004 sur la zone d'étude correspondant au domaine ESCOMPTE).

Dans une seconde phase, l'impact des mesures de réduction de la vitesse sur les concentrations en ozone est étudié par rapport à l'état de référence (mai à septembre 2006) selon deux scénarios (simulés dans la plateforme AIRES Méditerranée) :

- application pérenne des mesures de réduction de vitesse sur l'intégralité de l'été étudié;
- application ponctuelle des mesures de réduction de vitesse les jours de pics de pollution à l'ozone.

#### Mots-clef:

Emissions, modélisation, réduction, vitesse, ozone, pollution chronique

Auteurs: Gaëlle LUNEAU, Jonathan VIRGA

Relecteur: Alexandre ARMENGAUD

Projet: 03SIM06R – Date de publication: 09/10 2/48

# **SOMMAIRE**

| 1. | <b>IMP</b>                      | ACT DE LA REDUCTION DE VITESSE SUR LES EMISSIONS DE POLLUANTS       | 4        |
|----|---------------------------------|---------------------------------------------------------------------|----------|
|    | 1.1.                            | METHODOLOGIE DE CALCUL DES EMISSIONS DU TRAFIC ROUTIER              | 4        |
|    | 1.2.                            | IMPACT DE LA REDUCTION DE VITESSE SUR LES EMISSIONS DE BENZENE      | 6        |
|    | 1.3.                            | 1.2.2. DISCUSSION                                                   | 9        |
|    | 1.4.                            |                                                                     | 12       |
|    | 1.5.                            | IMPACT DE LA REDUCTION DE VITESSE SUR LES EMISSIONS DE CO           | 14<br>14 |
|    | 1.6.                            | IMPACT DE LA REDUCTION DE VITESSE SUR LES EMISSIONS DE ${\sf CO}_2$ | 16       |
| 2. | Mo                              | DELISATION                                                          | 18       |
|    | 2.1.                            | INTRODUCTION                                                        | 18       |
|    | 2.2.                            | ZONE D'ETUDE ET SCENARIOS MIS EN ŒUVRE                              | 20       |
|    | 2.3.                            |                                                                     | 21       |
|    | 2.4.                            | IMPACT DE LA REDUCTION DE VITESSE SUR LA POLLUTION DE POINTE        | 27       |
|    | 2.5.                            |                                                                     | 30       |
| 3. | Con                             | ICLUSION                                                            | 32       |
| 4. | REFERENCES                      |                                                                     |          |
| 5. | LISTE DES TABLEAUX ET FIGURES35 |                                                                     |          |
| 6  | Δκικ                            | IEYES                                                               | 37       |

# 1. IMPACT DE LA REDUCTION DE VITESSE SUR LES EMISSIONS DE POLLUANTS

#### 1.1. METHODOLOGIE DE CALCUL DES EMISSIONS DU TRAFIC ROUTIER

#### **1.1.1. COPERT IV**

Les émissions dues au trafic routier sont calculées en Provence-Alpes-Côte d'Azur avec l'outil CIRCUL'AIR, développé par l'ASPA. Il est basé sur la méthode de calcul européenne COPERT IV (EMEP Corinair, 2007).

CIRCUL'AIR permet de calculer les émissions annuelles des axes routiers en distinguant les parts des principaux types de véhicules (véhicules particuliers essence, diesel et GPL, véhicules utilitaires légers essence et diesel, poids lourds, motos, bus diesel et au gaz naturel et autocars). Ces émissions intègrent les émissions à chaud, les surémissions à froid, les surémissions dues à la pente de la route, les évaporations, les émissions dues à l'abrasion des freins, des pneus et de la route et la remise en suspension des particules.

Les données d'entrée sont les Trafics Moyens Journaliers Annuels (TMJA) par axe étudié. L'outil estime les trafics horaires à partir de clés temporelles (données SIREDO) à partir desquels est évaluée une vitesse horaire de circulation. Ces vitesses horaires sont alors intégrées dans les équations fournies par COPERT IV afin de calculer des émissions horaires. Enfin, les émissions sont agrégées afin d'obtenir un résultat annuel.

Le principe du calcul est schématisé en Annexe 1 : Principe de calcul de CIRCUL'AIR page 37.

# 1.1.2. INTEGRATION DES REDUCTIONS DE VITESSE DANS LE CALCUL D'EMISSIONS

La prise en compte d'une limitation de la vitesse autorisée sur un axe est possible dans CIRCUL'AIR grâce au paramètre « vitesse maximale autorisée ». Théoriquement, les véhicules ne dépassent jamais cette vitesse, même en situation de trafic fluide. La Figure 1 présente un exemple de profil horaire de vitesses sur une autoroute limitée à 130 km/h (courbe bleue) et l'impact de limitations de la vitesse maximale autorisée à 100 km/h (courbe orange) et à 70 km/h (courbe violette).

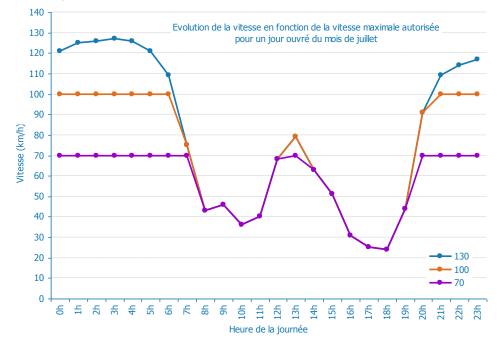



Figure 1 : Exemple de l'évolution de la vitesse en fonction de la vitesse maximale autorisée

Projet: 03SIM06R – Date de publication: 09/10 4/48

Les calculs actuels ne prennent pas en compte un éventuel effet de la réduction de la vitesse sur les périodes de congestion. La modification de la vitesse maximale autorisée n'a donc qu'une influence sur la vitesse en situation de trafic fluide. Cette réduction de vitesse n'impacte pas les vitesses en heures de pointe, déjà plus faibles que la limitation de vitesse.

La Figure 2 présente, pour trois tests de vitesse maximale autorisée (130, 100 et 70 km/h), l'évolution horaire des émissions de COV au cours d'une journée type (jour ouvré d'un mois de juillet). Conformément à la figure précédente, la réduction de la vitesse maximale autorisée a un impact sur les émissions en dehors des heures de pointe pour lesquelles la vitesse de circulation, déjà inférieure à la nouvelle réglementation de vitesse, n'est pas modifiée.

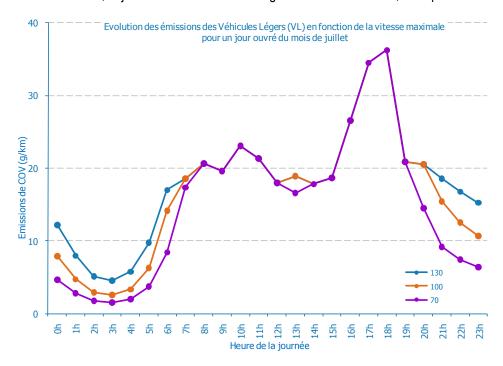



Figure 2 : Exemple d'évolution des émissions horaires de COV en fonction de la vitesse maximale autorisée

Les paragraphes suivants montrent les évolutions des émissions de benzène, NO<sub>x</sub>, de particules, du CO et CO<sub>2</sub> pour une réduction de vitesse annuelle de 30 km/h.

Projet: 03SIM06R – Date de publication: 09/10

5/48

## 1.2. IMPACT DE LA REDUCTION DE VITESSE SUR LES EMISSIONS DE BENZENE

#### 1.2.1. RESULTATS

La réduction de la vitesse autorisée a pour effet une augmentation de 511 kg des émissions de benzène, soit :

- + 0,26 % des émissions de benzène sur les axes concernés,
- + 0,05 % des émissions de benzène dues au trafic routier sur la zone d'étude,
- + 0,03 % des émissions de benzène toutes activités confondues sur la zone d'étude.

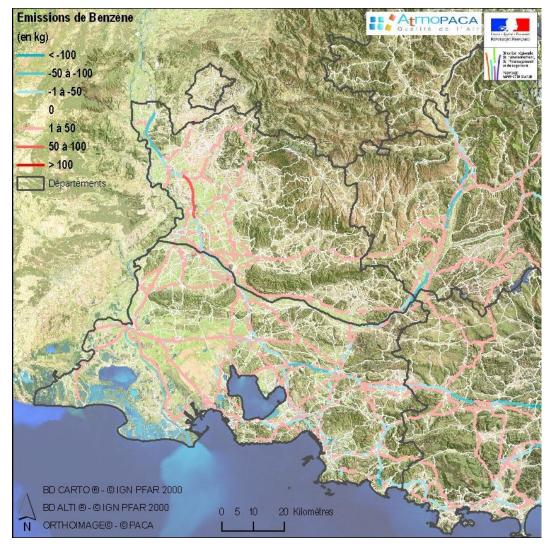



Figure 3 : Impact de la réduction de vitesse sur les émissions de benzène

La réduction des émissions de benzène est effective sur les autoroutes initialement limitées à 130 km/h passant à 100 km/h. Sur les voies rapides limitées à 110 km/h, l'impact est peu important (légèrement positif ou négatif en fonction de la composition du trafic). Au contraire, les axes sur lesquels est observée une augmentation des émissions correspondent aux brins initialement limités à 90 km/h passant à 70 km/h.

Les cartographies d'impact sur les émissions de benzène (en masse et en pourcentage) par axe ou par maille sont disponibles en Annexe 2.

Projet: 03SIM06R – Date de publication: 09/10 6/48

#### 1.2.2. DISCUSSION

L'inventaire des émissions 2004 pour la région PACA indique une contribution du secteur des transports routiers à hauteur de 57 % pour les émissions de benzène.

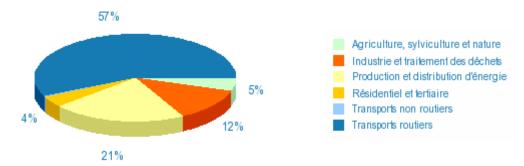
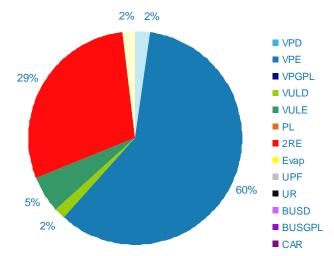
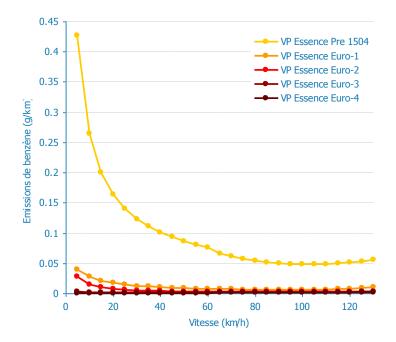



Figure 4 : Analyse sectorielle des émissions de benzène (inventaire PACA 2004)





Figure 5 : Analyse des contributions des émissions de benzène des transports routiers par catégorie de véhicules

Parmi l'ensemble des véhicules, ce sont les véhicules essence qui contribuent majoritairement aux émissions de benzène (60 % des émissions de benzène proviennent des véhicules particuliers essence, 5 % des véhicules utilitaires légers essence, 29 % des deux-roues).

Les poids lourds, bus et cars roulent exclusivement au diesel. Leurs émissions de benzène sont très minoritaires et donc négligeables.

L'étude des émissions unitaires de benzène (véhicules particuliers essence) confirme l'évolution des baisses d'émissions avec les avancées technologiques. Les véhicules Pre-EURO 1-1504 (mise en circulation entre 1987 et 1992) émettent beaucoup plus de benzène que les véhicules issus des normes suivantes.

Figure 6 : Evolution des émissions unitaires de benzène en fonction de la vitesse (véhicules particuliers essence)



La pondération de ces émissions unitaires par rapport à la composition du parc automobile roulant permet l'évaluation des rejets réellement émis par cette catégorie de véhicule (estimation d'un VPE « moyen »). La composition du parc de VPE (source CITEPA) en 2006 et 2008 est présentée dans le Tableau 1 ci-dessous. Il indique la part non négligeable des véhicules PRE-Euro 1 (13 % du parc en 2006 et 9 % en 2008).

| Catégorie de Véhicules Particuliers Essence (VPE) | Parc 2006 | Parc 2008 |
|---------------------------------------------------|-----------|-----------|
| Pre-Euro 1 / 1504 (1985 – 1992)                   | 13 %      | 9 %       |
| Euro 1 (1992 - 1996)                              | 21 %      | 16 %      |
| Euro 2 (1996 - 2000)                              | 23 %      | 28 %      |
| Euro 3 (2000 - 2005)                              | 33 %      | 25 %      |
| Euro 4 (2005 - 2010)                              | 9 %       | 22 %      |

Tableau 1 : Composition du parc de VPE (parcs automobiles roulant 2006 et 2008, CITEPA)

La Figure 7 ci-après présente l'évolution des émissions de benzène en fonction de la vitesse pour un véhicule particulier essence moyen en 2006 et en 2008 :

- L'impact de la vitesse de circulation sur les émissions de benzène est important, principalement pour les basses vitesses (inférieures à 80 km/h) pour lesquelles les émissions de benzène sont d'autant plus fortes que la vitesse est réduite. Il s'agit notamment des situations encombrées, particulièrement favorables à ces émissions.
- Pour des gammes de vitesses plus rapides (entre 80 et 130 km/h), l'impact de la vitesse sur les émissions est beaucoup moins net. Une diminution de la vitesse des véhicules de 130 à 100 km/h entraine un léger gain d'émissions. Par contre, si la réduction de vitesse porte sur des vitesses inférieures à 100 km/h, les émissions de benzène peuvent légèrement augmenter.

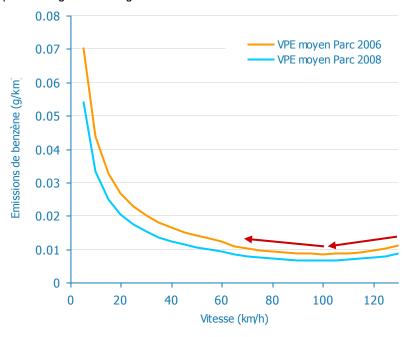



Figure 7 : Evolution des émissions de benzène avec la vitesse pour un véhicule particulier essence moyen en 2006 et en 2008

Projet: 03SIM06R - Date de publication: 09/10

## 1.3. IMPACT DE LA REDUCTION DE VITESSE SUR LES EMISSIONS DE $NO_X$

#### 1.3.1. RESULTATS

La réduction de la vitesse autorisée a pour effet une diminution de 986 000 kg des émissions de NO<sub>x</sub>, soit :

- 3,25 % des émissions de NO<sub>x</sub> sur les axes concernés,
- - 0,77 % des émissions de NO<sub>x</sub> dues au trafic routier sur la zone d'étude,
- 0,39 % des émissions de NO<sub>x</sub> toutes activités confondues sur la zone d'étude.



Figure 8 : Impact de la réduction de vitesse sur les émissions d'oxydes d'azote

Les réductions d'émissions d'oxydes d'azote sont maximales (jusqu'à -20 % sur certains tronçons) sur des autoroutes limitées initialement à 130 km/h et dont la vitesse maximale autorisée est réduite à 100 km/h ainsi que sur les axes rapides limités à 110 km/h. Sur ces axes, le pourcentage de poids lourds est limité (< 7 %).

Sur les routes initialement à 90 km/h, les émissions de  $NO_x$  diminuent en plus faible proportion (< 10 %). Sur ces axes, le pourcentage de poids lourds est encore plus restreint (< 5 %).

C'est sur les axes identiques mais avec un pourcentage de poids lourds plus important que l'impact sur les émissions de NO<sub>x</sub> est le plus faible voire que l'on peut constater une augmentation des émissions d'oxydes d'azote.

Les cartographies d'impact sur les émissions de  $NO_x$  (en masse et en pourcentage) par axe ou par maille sont disponibles en Annexe 3.

Projet: 03SIM06R – Date de publication: 09/10 9/48

#### 1.3.2. DISCUSSION

En région PACA, plus de la moitié des émissions d'oxydes d'azote est due aux transports routiers (source inventaire 2004, version 2009).

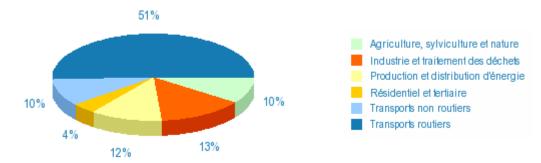
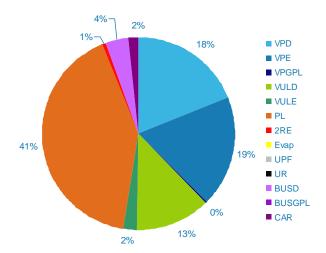




Figure 9 : Analyse sectorielle des émissions de NO<sub>x</sub> (inventaire PACA 2004)



La Figure 10 détaille les émissions de NO<sub>x</sub> des transports routiers par catégorie de véhicules. Les poids lourds sont les plus gros émetteurs (41 % des NO<sub>x</sub> en PACA en 2004) puis viennent les véhicules particuliers essence (19 %) et diesel (18 %) et les véhicules utilitaires légers diesel (13 %).

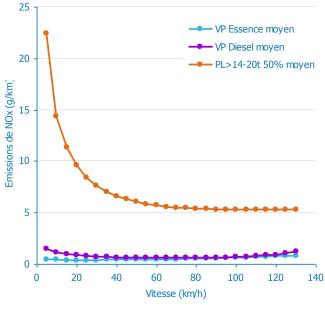
Figure 10 : Analyse des contributions des émissions d'oxydes d'azote des transports routiers par catégorie de véhicules

Les améliorations technologiques apportées par l'évolution des normes EURO sont visibles avec une réduction générale des émissions de NO<sub>x</sub> pour les véhicules les plus récents. Le détail de ces émissions unitaires est présenté en Annexe 7.

De la même manière que dans le paragraphe précédent, ces émissions unitaires sont croisées avec la composition du parc automobile roulant afin de tenir compte de l'ensemble de la flotte en circulation et estimer les émissions rejetées par un véhicule « moyen ».

| Parc automobile roulant 2006 | Poids Lourds | VP Diesel |
|------------------------------|--------------|-----------|
| Conventionnel (< 1992)       | 2,5 %        | 8 %       |
| Euro 1 (1992 - 1996)         | 7,6 %        | 15 %      |
| Euro 2 (1996 - 2000)         | 36,4 %       | 25 %      |
| Euro 3 (2000 - 2005)         | 53,4 %       | 46 %      |
| Euro 4 (2005 - 2010)         | 0,0 %        | 16 %      |

Tableau 2 : Composition du parc de poids lourds et VPD (parcs automobiles roulant 2006, CITEPA)


Projet: 03SIM06R - Date de publication: 09/10

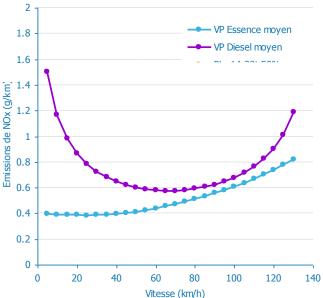

Les poids lourds sont les véhicules les plus émetteurs d'oxydes d'azote. D'une manière générale, les émissions augmentent avec une réduction de la vitesse. Cette variation est d'autant plus marquée pour des vitesses faibles. Pour des vitesses supérieures à 100 km/h, la variation de la vitesse impacte peu les émissions des poids lourds.

Figure 11 : Evolution des émissions de NO<sub>x</sub> avec la vitesse pour un VPE, un VPD et un Poids Lourd moyens selon le parc automobile en 2006

La figure ci-contre zoome sur les émissions unitaires rejetées par les véhicules particuliers, essence et diesel. Les émissions de NO<sub>x</sub> diminuent lorsque la vitesse est réduite entre 130 et 70 km/h.

Figure 12 : Evolution des émissions de NO<sub>x</sub> avec la vitesse pour un VPE, un VPD moyens selon le parc automobile en 2006





Les courbes d'émissions de  $NO_x$  en fonction de la vitesse ne présentent pas le même profil selon qu'il s'agit de véhicules particuliers ou de poids lourds. La composition du trafic sur un axe est donc un facteur important de l'impact d'une mesure de réduction de vitesse sur la variation des émissions d'oxydes d'azote.

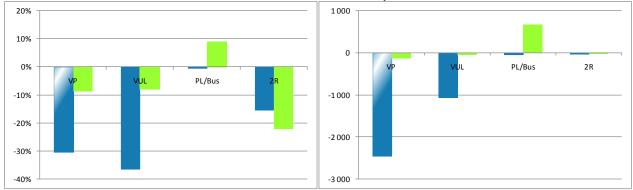



Figure 13 : Impact de la réduction de la vitesse sur les émissions de  $NO_x$  (en % et en kg) par catégories de véhicules sur un axe limité à 130 km/h avec 6 % PL (en bleu) et une route limitée à 90 km/h avec 20 % PL (en vert)

L'A55 atteint une diminution de -20 % de  $NO_x$  (-4 tonnes) alors que sur la N572, fortement fréquentée par les poids lourds, les émissions augmentent de 6 % (+0.5 tonne).

# 1.4. <u>IMPACT DE LA REDUCTION DE VITESSE SUR LES EMISSIONS DE PARTICULES</u>

#### 1.4.1. RESULTATS

La réduction de la vitesse autorisée a pour effet une diminution de 85 000 kg des émissions de PM10, soit :

- 3,46 % des émissions de PM10 sur les axes concernés.
- 0.71 % des émissions de PM10 dues au trafic routier sur la zone d'étude.
- 0,21 % des émissions de PM10 toutes activités confondues sur la zone d'étude.

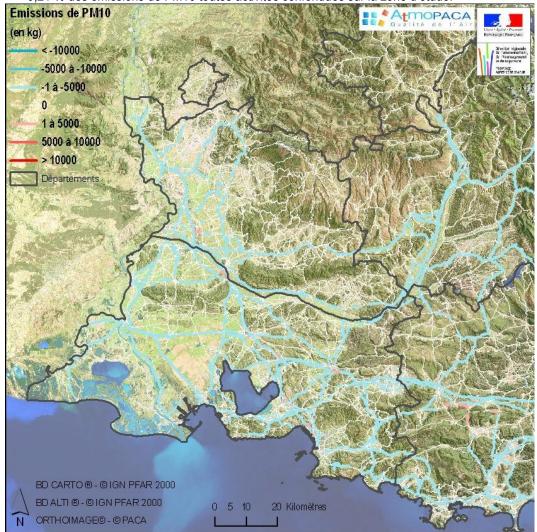



Figure 14 : Impact de la réduction de vitesse sur les émissions de PM10

Les axes qui présentent la plus importante diminution des émissions de PM10 sont des autoroutes initialement limitées à 130 km/h ainsi que les axes à 110 km/h. Cette réduction des émissions de PM10 est d'autant plus importante que le trafic comprend une faible part de poids lourds (une limitation de la vitesse de 130 à 100 ne modifie pas la vitesse de circulation des PL donc l'impact est d'autant plus important si le trafic est composé de VP). Cette baisse d'émission peut atteindre localement -15 à -20 % si PL < 7 %, -10 % si PL >10 %.

La baisse des PM10 peut atteindre localement 10 % sur des routes initialement limitée à 90 km/h avec, cette fois ci, peu de poids lourds. En effet, les émissions des PL ré-augmentent de 80 à 70 km/h. Une très faible proportion des routes indique une augmentation des émissions de PM10.

Les cartographies d'impact sur les émissions de particules (en masse et en pourcentage) par axe ou par maille sont disponibles en Annexe 4.

12/48

Projet: 03SIM06R - Date de publication: 09/10

#### 1.4.2. DISCUSSION

D'après l'inventaire régional des émissions 2004, 54 % des émissions de PM10 sont rejetées par le secteur des transports routiers. Parmi ces émissions sont considérées les rejets de particules dus à la combustion mais aussi toutes les émissions dues à l'abrasion des freins, des pneus et à l'usure de la route ainsi qu'à la remise en suspension.

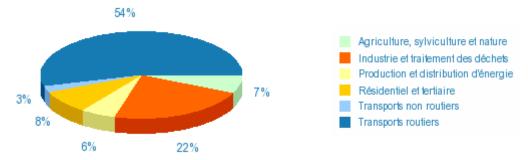
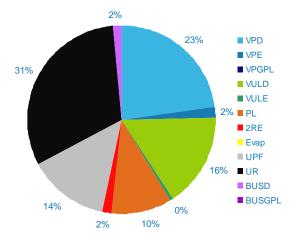




Figure 15 : Analyse sectorielle des émissions de PM10 (Inventaire PACA 2004)



La Figure 16 détaille ces émissions par catégorie de véhicules. Les véhicules diesel sont les principaux émetteurs de particules (23 % pour les VP, 16 % pour les VUL et 10 % pour les PL).

Les émissions de particules non issues de combustions représentent une part importante (14 % sont dus à l'usure des pneus et des freins, 31 % à l'usure de la route et remise en suspension).

Figure 16 : Analyse des contributions des émissions de PM10 des transports routiers par catégorie de véhicules

Comme pour les autres polluants, les émissions unitaires ont été calculées pour des véhicules « moyens » tenant compte de la composition du parc automobile (le détail des émissions est présenté en Annexe 8) :

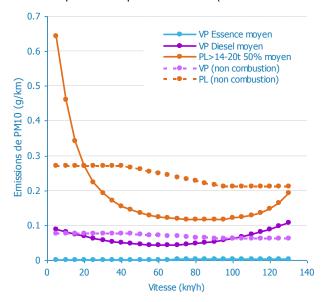



Figure 17 : Evolution des émissions de particules avec la vitesse par catégorie de véhicules

Les véhicules qui émettent des particules sont les poids lourds et les VP diesel.

Entre 130 et 80 km/h, les émissions dues à la combustion (en traits pleins) diminuent pour les 2 catégories de véhicules. De 80 à 70 km/h, les émissions des PL ré-augmentent légèrement.

D'après les équations de calcul des émissions non dues à la combustion (courbes en pointillés), celles-ci ont tendance à stagner (voire augmenter pour les poids lourds) lors d'une réduction de la vitesse de circulation. Le détail de l'évolution des émissions de particules par secteur est présenté en Annexe 9.

# 1.5. IMPACT DE LA REDUCTION DE VITESSE SUR LES EMISSIONS DE CO

#### 1.5.1. RESULTATS

La réduction de la vitesse autorisée a pour effet une diminution de 2 476 tonnes des émissions de CO, soit :

- 5,47 % des émissions de CO sur les axes concernés,
- 0,58 % des émissions de CO dues au trafic routier sur la zone d'étude,
- 0,26 % des émissions de CO toutes activités confondues sur la zone d'étude.



Figure 18 : Impact de la réduction de vitesse sur les émissions de CO

Les émissions de CO diminuent sur la totalité des axes concernés par une mesure de réduction de vitesse. D'une manière générale, les gains d'émissions de CO sont maximaux sur les autoroutes initialement limitées à 130 km/h ou 110 km/h et peuvent atteindre jusqu'à – 40 % localement.


Sur les routes dont la limite de vitesse, initialement 90 km/h, devient 70 km/h, la baisse des émissions de CO est moindre, de – 10 % à quelques %.


Les cartographies d'impact sur les émissions de CO (en masse et en pourcentage) par axe ou par maille sont disponibles en Annexe 5.

Projet: 03SIM06R – Date de publication: 09/10

#### 1.5.2. DISCUSSION

En région PACA, 40 % des émissions de monoxyde de carbone sont dus aux transports routiers (source inventaire 2004, version 2009).





Les émissions de CO sont très largement issues des véhicules essence (71 % sont émis par les véhicules particuliers essence et 12 % par les deux-roues).

Figure 19 : Analyse des contributions des émissions de CO des transports routiers par catégorie de véhicules

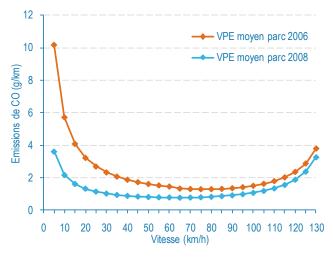



Figure 20 : Evolution des émissions de CO avec la vitesse pour un véhicule particulier essence moyen en 2006 et en 2008

Entre 130 et 70 km/h, les émissions de CO diminuent avec la vitesse de circulation. Toutefois, cette baisse des émissions de CO est plus importante pour des vitesses de circulation réduites de 130 à 100 km/h que pour des vitesses abaissées entre 100 et 70 km/h.

## 1.6. IMPACT DE LA REDUCTION DE VITESSE SUR LES EMISSIONS DE CO<sub>2</sub>

#### 1.6.1. RESULTATS

La réduction de la vitesse autorisée a pour effet une diminution de 142 850 tonnes des émissions de CO<sub>2</sub>, soit :

- 3,13 % des émissions de CO<sub>2</sub> sur les axes concernés,
- 1,10 % des émissions de CO<sub>2</sub> dues au trafic routier sur la zone d'étude,
- 0,30 % des émissions de CO<sub>2</sub> toutes activités confondues sur la zone d'étude.

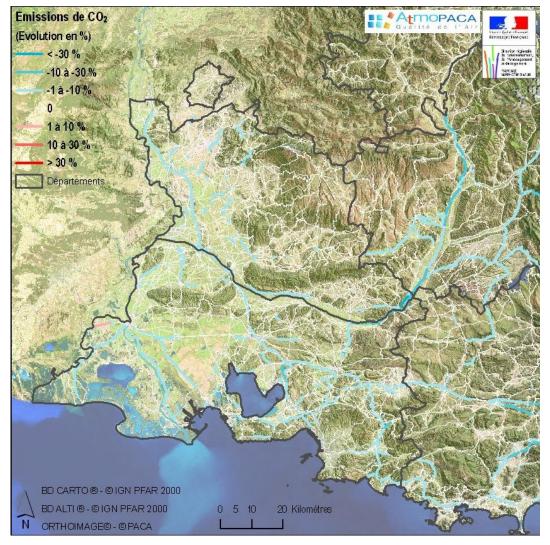
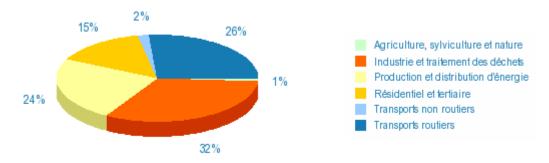



Figure 21 : Impact de la réduction de vitesse sur les émissions de CO<sub>2</sub>


Les émissions de CO<sub>2</sub> diminuent majoritairement sur les axes rapides. Sur les autoroutes initialement limitées à 130 km/h, ainsi que sur les voies limitées à 110 km/h, le gain peut atteindre jusqu'à – 20 % sur certains axes. Sur ces axes en particulier, le pourcentage de poids lourds est faible (la limitation de la vitesse maximale autorisée n'affecte pas la vitesse de circulation des poids lourds qui roulent déjà à 100 km/h).

Les cartographies d'impact sur les émissions de CO<sub>2</sub> (en masse et en pourcentage) par axe ou par maille sont disponibles en Annexe 10.

Projet: 03SIM06R – Date de publication: 09/10

#### 1.6.2. DISCUSSION

D'après l'inventaire régional des émissions 2004, les émissions de dioxyde de carbone sont émises à 26 % par le secteur des transports routiers.



CO2 kg/an | Inventaire des émissions PACA 2004 @ AtmoPACA

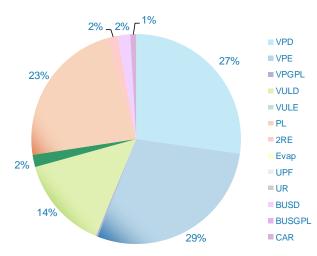



Figure 22 : Analyse des contributions des émissions de  $CO_2$  des transports routiers par catégorie de véhicules

L'ensemble des véhicules contribue aux émissions de CO<sub>2</sub>, ces émissions sont directement dépendantes de la quantité de carburant consommée.

Les véhicules particuliers, essence et diesel, émettent plus de 50 % des émissions de CO<sub>2</sub> dues au trafic routier. Les poids lourds contribuent au quart de ces émissions (PACA, 2004).

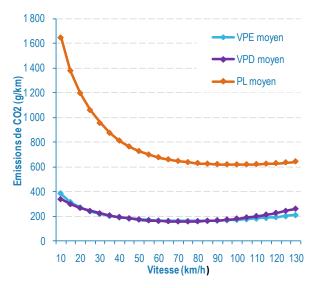



Figure 23 : Evolution des émissions de CO<sub>2</sub> avec la vitesse pour trois types de véhicules

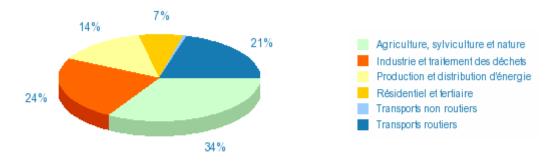
De 130 à 70 km/h, les émissions de  $CO_2$  des véhicules diminuent sauf pour les poids lourds pour lesquels on constate une légère augmentation des émissions de  $CO_2$  entre 90 et 70km/h.

La mesure de réduction de vitesse n'engendre généralement pas d'augmentation des consommations de carburant et donc pas de surémission de CO<sub>2</sub>, sauf sur certains axes avec un fort pourcentage de poids lourds pour lesquels la vitesse a été réduite à 70 km/h.

# 2. MODELISATION

#### 2.1. INTRODUCTION

#### 2.1.1. AIRES MEDITERRANEE


La plateforme de modélisation AIRES Méditerranée (<u>www.aires-mediterranee.org</u>) fournit une prévision quotidienne de la qualité de l'air à l'échelle régionale pour plusieurs polluants : ozone, oxydes d'azote et particules. Elle possède, en parallèle, un mode de fonctionnement de type scénario.

AIRES Méditerranée est composée d'un modèle météorologique couplé à un modèle de chimie-transport :

- WRF (Skamarock W., 2008) est un modèle météorologique méso-échelle développé principalement par le National Center for Atmospheric Research (NCAR);
- CHIMERE (Bessagnet at al., 2004) est un modèle chimie-transport multi-échelle développé par l'Institut Pierre-Simon Laplace, l'INERIS, le LISA et le CNRS.

# 2.1.2. IMPACT DES ACTIVITES ANTHROPIQUES ET NATURELLES SUR LA PRODUCTION D'OZONE

L'ozone est un polluant secondaire qui résulte de la transformation de polluants émis sous l'effet du rayonnement solaire. Les activités anthropiques sont émettrices de divers polluants. Cependant, la végétation constitue également une source d'émissions naturelles de COV. Dans les Bouches-du-Rhône, les sources naturelles peuvent émettre 34 % des COVNM (inventaire des émissions 2004). Au total en région PACA, leur contribution peut atteindre 60 %. Toutefois, ces émissions sont généralement diffuses et réparties de manière relativement homogène (à la différence des rejets anthropiques très localisés).



COVNM kg/an | Inventaire des émissions PACA 2004 © AtmoPACA

Figure 24 : Analyse sectorielle des émissions de COVNM dans les Bouches-du-Rhône (2004)

Les scénarios suivants ont été testés pour évaluer et comparer le rôle des activités anthropiques et le rôle des sources naturelles de COV sur la production d'ozone :

- Scénario BIO1 : dans un premier temps, les émissions anthropiques sont supprimées et seules les émissions biotiques (issues de la végétation) sont conservées;
- Scénario BIO2 : à l'inverse du scénario BIO1, les émissions biotiques sont supprimées et seules les émissions anthropiques sont conservées.

Les résultats sont présentés en Figure 25. Les émissions anthropiques seules produisent plus d'ozone troposphérique que les émissions naturelles seules. Toutefois, c'est bien l'association de l'ensemble des sources d'émissions, précurseurs d'origine humaine associés aux composés organiques volatils émis par les essences végétales, qui génère une intensification de la pollution photochimique.

Projet: 03SIM06R – Date de publication: 09/10

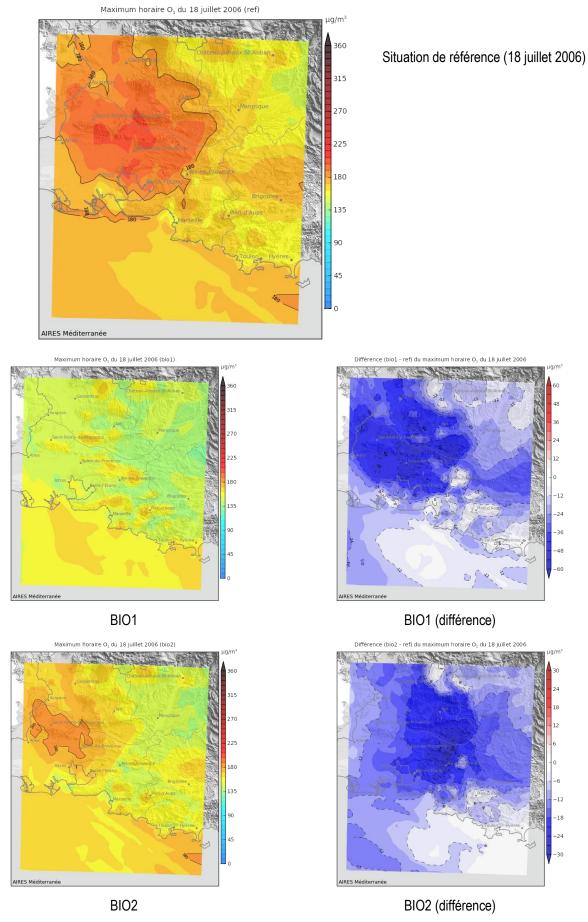



Figure 25 : Contribution des émissions anthropiques et naturelles sur la production d'ozone

### 2.2. ZONE D'ETUDE ET SCENARIOS MIS EN ŒUVRE

#### 2.2.1. RESOLUTION TEMPORELLE ET SPATIALE

La période du 2 mai au 30 septembre 2006 (soit 153 jours) a été choisie pour modéliser l'impact de la réduction de vitesse sur la qualité de l'air. Un nombre important de jours de pollution ont été constatés pendant l'été 2006. Les mesures d'urgences ont été appliquées pendant 20 jours durant le mois de juillet.

Le domaine géographique retenu est le domaine « ESCOMPTE » de 135 km x 150 km pour une résolution horizontale de 3 km centré sur Marseille et l'Etang de Berre. Ce domaine reprend le nom du programme ESCOMPTE dont l'objectif a été d'améliorer et valider les modèles numériques régionaux de chimie-transport après une campagne de mesure intensive réalisée au cours de l'été 2001 (Cros et al., 2004).

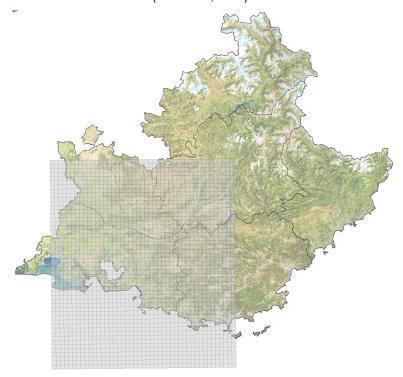



Figure 26 : Localisation du domaine « Escompte »

#### 2.2.2. SCENARIOS SIMULES

Trois modélisations ont été effectuées :

- le scénario de référence REF avec l'utilisation du cadastre d'émissions PACA 2004 (5 mois d'été : mai à septembre 2006);
- le scénario RV1 représente la situation où la mesure de réduction de vitesse est appliquée en permanence pendant les 5 mois d'été 2006 modélisés. Les émissions proviennent du nouveau cadastre calculé précédemment ;
- le scénario RV2 prend également en compte les émissions issues du calcul avec la réduction de vitesse, mais uniquement pendant les 20 jours où les mesures d'urgence ont été déclenchées. Le reste du temps, les émissions proviennent du cadastre d'émissions PACA 2004. Le récapitulatif des concentrations d'ozone observées en 2006 est en Annexe 11.

Projet: 03SIM06R – Date de publication: 09/10 20/48

# 2.3. SCENARIO DE REFERENCE

Une comparaison entre observations et modélisation a été effectuée sur la modélisation de référence afin de valider les modèles WRF et CHIMERE pour l'été 2006.

#### 2.3.1. VALIDATION METEOROLOGIQUE

Le résultat de la modélisation avec WRF a été comparé avec les observations des 19 stations Météo-France présentes sur le domaine. Environ 6 500 couples de valeurs observées / valeurs modélisées ont été utilisés pour le calcul du biais et du coefficient de corrélation linéaire.

#### **TEMPERATURE A 2 METRES**

Le biais obtenu pour la variable de température à 2 mètres varie de -1,3 à 0,2 °C selon les stations. En moyenne, il est de -0,8 °C. Le coefficient de corrélation linéaire varie de 0,84 à 0,96 selon les stations. Il est de 0,92 pour l'ensemble des stations.

Les températures à 2 mètres sont ainsi très bien reproduites par le modèle WRF.

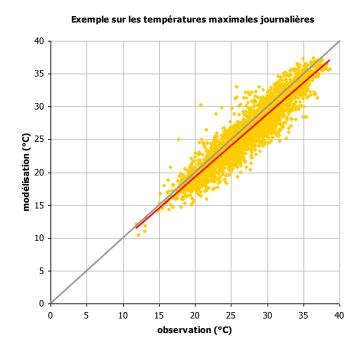



Figure 27 : Comparaison observation / modélisation des températures maximales journalières sur l'ensemble des stations météo du domaine

La Figure 29 indique que la variabilité horaire de la température à la station d'Aix-en-Provence est également correctement reproduite par le modèle.

Projet: 03SIM06R – Date de publication: 09/10 21/48

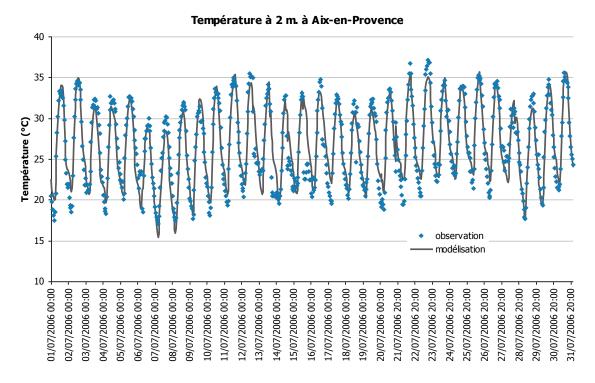



Figure 28 : Variation horaire de la température à 2 mètres sur la station d'Aix-en-Provence

#### **VITESSE DU VENT A 10 METRES**

Le biais obtenu pour la vitesse du vent varie de -1,14 m/s à 2,22 m/s selon les stations. Le biais moyen sur l'ensemble des stations est de 0,63 m/s. Le coefficient de corrélation varie de 0,62 à 0,84 selon les stations. Il est de 0,72 en moyenne.

Le modèle WRF reproduit les vitesses du vent de façon satisfaisante.

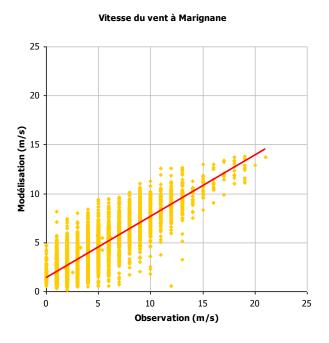



Figure 29 : Comparaison observation / modélisation des vitesses du vent à 10 mètres à la station de Marignane

Projet: 03SIM06R – Date de publication: 09/10 22/48

#### 2.3.2. VALIDATION DE LA CHIMIE

#### **O**ZONE

La comparaison entre le résultat de la modélisation avec CHIMERE et les concentrations observées aux 29 stations d'Atmo PACA et Airfobep a été réalisée sur les 3 332 maximums journaliers de la période étudiée.

Le biais varie de -13 à 12  $\mu$ g/m³ selon les stations. Il est de -2  $\mu$ g/m³ pour l'ensemble des stations du domaine. Le coefficient de corrélation varie de 0,7 à 0,88 selon les stations. Il est de 0,79 en moyenne.

CHIMERE reproduit de façon satisfaisante les maximums journaliers en ozone sur la période donnée. Toutefois, le modèle a tendance à surestimer les faibles valeurs et à sous-estimer les fortes valeurs. Les fortes valeurs observées (311  $\mu$ g/m³ à Rognac le 2 juillet 2006, 308  $\mu$ g/m³ à Vitrolles le 11 juillet 2006, 327  $\mu$ g/m³ à Vitrolles le 26 juillet 2006) ne sont pas reproduites. CHIMERE ne modélise pas de concentration en ozone supérieure à 240  $\mu$ g/m³.

# Maxmimum journalier ozone 300 250 200 modélisation (µg/m3) 150 100 50 0 50 100 150 200 250 300 observation (µg/m3)

Figure 30 : Comparaison observation / modélisation des maximums journaliers en ozone sur l'ensemble des stations du domaine

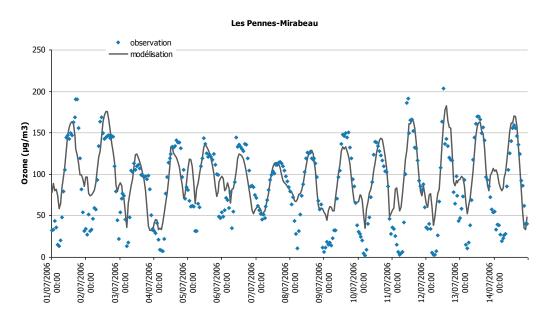
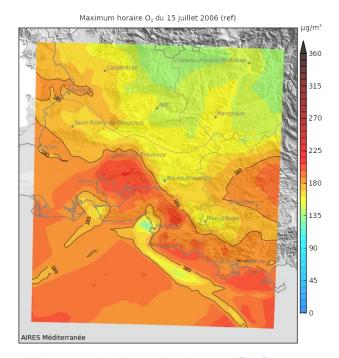
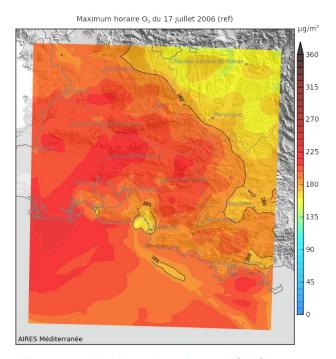



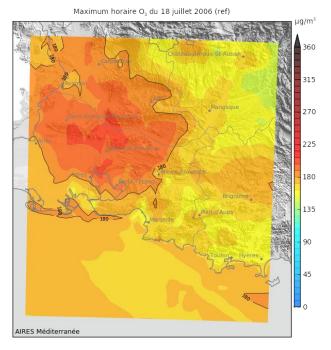

Figure 31 : Variation horaire de la concentration en ozone à la station des Pennes-Mirabeau


Projet: 03SIM06R – Date de publication: 09/10 23/48

Les cartes ci-dessous représentent les maximums horaires en ozone pour les journées des 15, 17 et 18 juillet 2006. Ces 3 journées (sur les 153 modélisées) sont présentées ici en exemple, accompagnées des valeurs mesurées aux stations. Ces cartes confirment la restitution correcte de la distribution spatiale des concentrations en ozone par le modèle.



| Rousset                  | 182 µg/m³ |
|--------------------------|-----------|
| Aubagne                  | 180 µg/m³ |
| Marseille Ste-Marguerite | 184 µg/m³ |
| Marseille 5 avenues      | 163 µg/m³ |
| Berre                    | 237 µg/m³ |
| Vitrolles                | 204 µg/m³ |
| Château-Arnoux-St-Auban  | 189 µg/m³ |
| Brignoles                | 182 µg/m³ |
| Hyères                   | 197 µg/m³ |
| Toulon                   | 180 µg/m3 |
| Apt                      | 165 µg/m3 |
|                          |           |


Figure 32 : Maximum horaire modélisé en ozone et mesures maximales enregistrées aux stations le 15 juillet 2006



| Aix-en-Provence Ecole d'Art | 209 µg/m <sup>3</sup> |
|-----------------------------|-----------------------|
| Marseille 5 avenues         | 161 µg/m³             |
| Cadarache                   | 215 µg/m³             |
| La Ciotat                   | 241 µg/m³             |
| Les Pennes-Mirabeau         | 195 µg/m³             |
| Berre                       | 212 µg/m³             |
| Marignane                   | 270 µg/m3             |
| Vitrolles                   | 284 µg/m³             |
| Avignon                     | 190 µg/m³             |
| Brignoles                   | 172 µg/m³             |
| Manosque                    | 173 µg/m³             |

Figure 33 : Maximum horaire modélisé en ozone et mesures maximales enregistrées aux stations le 17 juillet 2006

Projet: 03SIM06R – Date de publication: 09/10 24/48



| Marseille 5 avenues  | 148 µg/m <sup>3</sup> |
|----------------------|-----------------------|
| Vallée de l'Huveaune | 182 µg/m <sup>3</sup> |
| St-Remy-de-Provence  | 183 µg/m³             |
| Apt                  | 184 µg/m³             |
| Avignon              | 198 µg/m <sup>3</sup> |
| Comtat Venaissin     | 201 µg/m <sup>3</sup> |
| Saze (30)            | 190 µg/m <sup>3</sup> |
| Aix Jas de Bouffan   | 171 µg/m³             |
| Cadarache            | 171 µg/m³             |
| Brignoles            | 155 µg/m³             |
|                      |                       |

Figure 34 : Maximum horaire modélisé en ozone et mesures maximales enregistrées aux stations le 18 juillet 2006

#### **DIOXYDE D'AZOTE**

La comparaison entre le résultat de la modélisation avec CHIMERE et les concentrations observées aux 22 stations d'Atmo PACA et Airfobep a été réalisée sur les 2 586 maximums journaliers de la période.

Pour les 14 stations urbaines du domaine, le biais varie de -2 à 50  $\mu g/m^3$  selon les stations. Il est de 17  $\mu g/m^3$  pour l'ensemble des stations urbaines du domaine. Le coefficient de corrélation varie de 0,34 à 0,74 selon les stations. Il est de 0,55 en moyenne.

Pour les 6 stations trafic du domaine, le biais varie de -41 à 27  $\mu$ g/m³. Il est de -8  $\mu$ g/m³ en moyenne sur ces 6 stations. Le coefficient de corrélation varie de 0,42 à 0,66 selon les stations. Il est de 0,53 en moyenne.

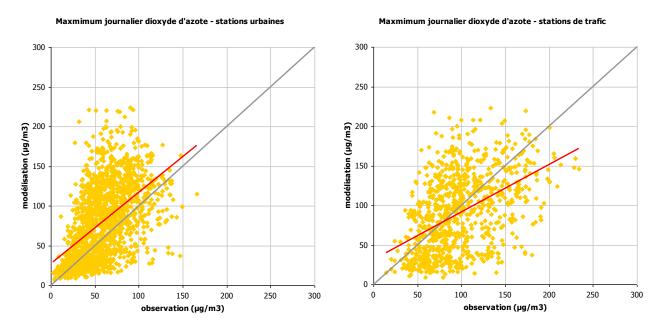
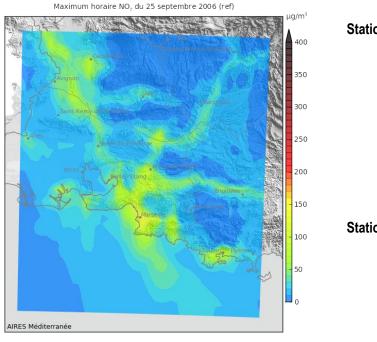




Figure 35 : Comparaison observation / modélisation des maximums journaliers en dioxyde d'azote sur les stations urbaines et de trafic du domaine

Projet: 03SIM06R – Date de publication: 09/10 25/48

Le modèle a tendance à surestimer les maximums journaliers en dioxyde d'azote sur la période donnée. Il est important de noter que la résolution du modèle (mailles de 3 km) n'est pas optimale pour restituer correctement les concentrations en zone urbaine et autour des routes à fort trafic.

La Figure 36 Figure 36 représente le maximum horaire en dioxyde d'azote pour la journée du 25 septembre 2006. Cet exemple est accompagné des mesures aux stations urbaines et de trafic pour la même journée. Cette carte indique que les concentrations les plus importantes sont rencontrées en zone urbaine, autour des grandes industries de l'Etang de Berre et le long des principaux axes routiers structurants.



#### Stations urbaines

| IVIa          | ırtigues | 21              | ug/m³ |
|---------------|----------|-----------------|-------|
|               | Arles    | 26              | ug/m³ |
| Marseille 5 a | venues   | 79 <sub> </sub> | ug/m³ |
| Aix Eco       | le d'Art | 79 <sub> </sub> | ug/m³ |
| Toulon A      | Arsenal  | 75              | ug/m³ |
| Avignon       | Mairie   | 31              | ug/m³ |
|               |          |                 |       |

#### Stations de trafic

| Marseille Timone          | 121 µg/m³ |
|---------------------------|-----------|
| Marseille Plombière       | 134 µg/m³ |
| Aix Roy René              | 81 µg/m³  |
| Toulon Foch               | 124 µg/m³ |
| Avignon Charles-de-Gaulle | 61 µg/m³  |

Figure 36 : Maximum horaire modélisé en NO2 et mesures maximales enregistrées aux stations le 25 septembre 2006

Projet: 03SIM06R – Date de publication: 09/10 26/48

#### 2.4. IMPACT DE LA REDUCTION DE VITESSE SUR LA POLLUTION DE POINTE

Deux scénarios ont été modélisés :

- Le scénario RV1 correspond à l'application de la mesure de réduction de vitesse pendant les 153 jours de la période (du 2 mai au 30 septembre 2006);
- Le scénario RV2 correspond à l'application de la mesure de réduction de vitesse uniquement pendant les 20 jours où les mesures d'urgence ont été mises en place (le 2 et 3 juillet 2006, du 10 au 27 juillet 2006 inclus).

#### 2.4.1. **O**ZONE

#### **DIFFERENCE DES MAXIMUMS JOURNALIERS**

Les différences entre les maximums journaliers (obtenus avec le scénario RV1 et l'état de référence) sont cartographiées dans les figures suivantes. Les zones bleues correspondent à une amélioration des concentrations en ozone (le scénario modélisé induit des concentrations en ozone plus faibles que l'état de référence). A l'inverse, les zones rouges correspondent à une dégradation des concentrations en ozone.

Pour les trois journées présentées ici (ainsi que les 150 autres jours de la période étudiée), les gains en ozone sont de l'ordre de quelques microgrammes dans les zones rurales. Autour des grands axes routiers, les concentrations d'ozone sont légèrement plus importantes. La diminution des émissions d'oxydes d'azotes provoque une baisse de l'ozone dégradé par ces molécules. L'impact des mesures de réduction de vitesse sont très faibles.

Les différences obtenues entre le scénario RV2 et l'état de référence apportent des résultats identiques pendant les 20 jours où la mesure de réduction de vitesse a été appliquée.

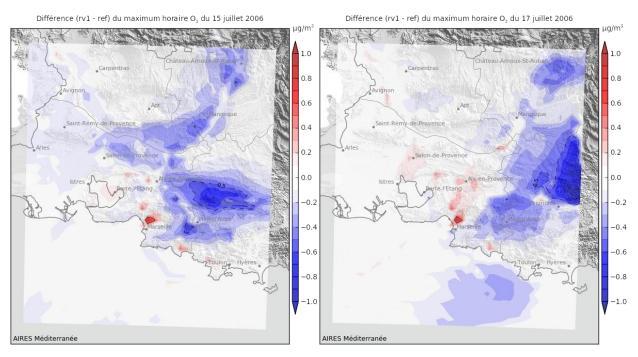



Figure 37 : Différence du maximum journalier en ozone les 15 et 17 juillet 2006

Projet: 03SIM06R – Date de publication: 09/10 27/48

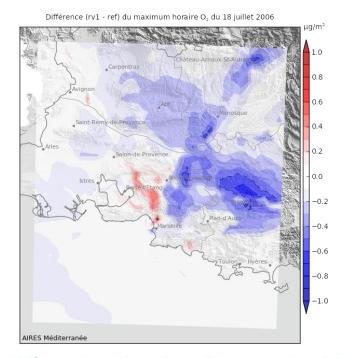



Figure 38 : Différence du maximum journalier en ozone le 18 juillet 2006

#### FREQUENCE DE DEPASSEMENT DU SEUIL D'INFORMATION

Pour caractériser la pollution de pointe, le nombre d'occurrences de dépassement horaire du seuil d'information de 180 µg/m³ est comptabilisé sur l'ensemble des 2 294 points de calcul du domaine et sur les 3 672 heures de la simulation.

| Simulation        | Nombre de dépassements horaires du seuil 180 µg/m³ |
|-------------------|----------------------------------------------------|
| Etat de référence | 43 044                                             |
| Scénario RV1      | 42 835                                             |
| Scénario RV2      | 42 867                                             |

Tableau 3 : Impact des scénarios de réduction de vitesse sur la pollution de pointe en ozone

L'effet de la réduction de vitesse est faible sur le nombre d'occurrences du dépassement du seuil de 180 µg/m³. La mise en place de la mesure sur les 5 mois simulés n'apporte pas de bénéfice significatif par rapport aux 20 jours où elle a été appliquée.

Projet: 03SIM06R – Date de publication: 09/10 28/48

#### 2.4.2. DIOXYDE D'AZOTE

Comme pour l'ozone, les différences entre les maxima journaliers (obtenus avec le scénario RV1 et l'état de référence) sont cartographiées dans la figure ci-dessous. Les zones bleues correspondent à une amélioration des concentrations en dioxyde d'azote (les concentrations modélisées pour l'état de référence sont plus importantes que pour le scénario). A l'inverse, les zones rouges correspondent à une dégradation des concentrations en dioxyde d'azote.



Figure 39 : Différence du maximum journalier en dioxyde d'azote les 13 et 15 août 2006

Les gains en dioxyde d'azote varient de 1 à 8 µg/m³ selon les journées. Ils sont localisés autour des axes routiers où la mesure de réduction de vitesse a été appliquée. Ces baisses de concentrations sont directement dues à la diminution des émissions d'oxyde d'azote.

Les différences obtenues entre le scénario RV2 et l'état de référence apportent des résultats identiques.

Projet: 03SIM06R – Date de publication: 09/10 29/48

## 2.5. IMPACT DE LA REDUCTION DE VITESSE SUR LA POLLUTION CHRONIQUE

#### 2.5.1. **O**ZONE

La fréquence de dépassement de la valeur cible de 120 µg/m³ en moyenne glissante sur 8 heures est importante sur la zone étudiée. L'objectif de ne pas dépasser ce seuil plus de 25 jours/an n'est pas respecté sur la zone d'étude, à l'exception de la zone urbaine de Marseille (Figure 40).

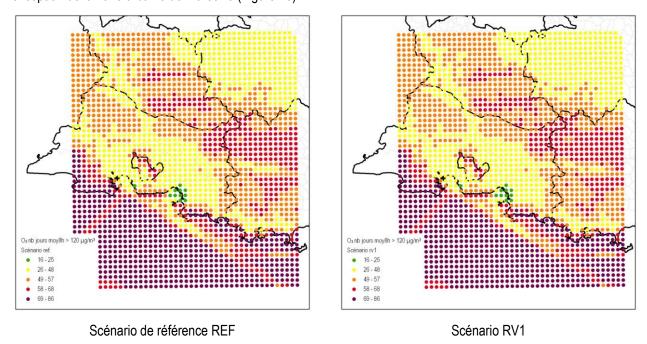



Figure 40 : Nombre de jours de dépassement de la valeur cible 120 µg/m³ sur 8h

La différence entre l'état de référence et le scénario RV1 (application de la mesure sur l'intégralité des mois de mai à septembre) est peu significative. Cet impact s'étale de -2 jours dans l'arrière-pays à +3 jours (Figure 41). Par contre, aucun impact sur la pollution chronique n'est constaté entre le scénario RV2 et l'état de référence.

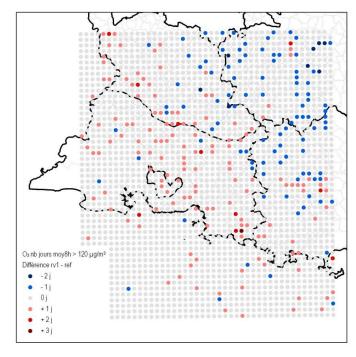



Figure 41 : Différence du nombre de jours où la moyenne glissante sur 8h dépasse le 120 μg/m³ entre les scénarios REF et RV1

Projet: 03SIM06R – Date de publication: 09/10 30/48

#### 2.5.2. DIOXYDE D'AZOTE

Les moyennes des 3 672 valeurs horaires de la période de simulation de l'état de référence et du scénario RV1 sont très similaires. La différence de ces moyennes indique un gain d'au maximum 1 µg/m³. L'impact de la réduction de vitesse a peu d'effet sur la moyenne de ces 5 mois. Cette mesure a un effet local et ponctuel sur les concentrations de dioxyde d'azote.

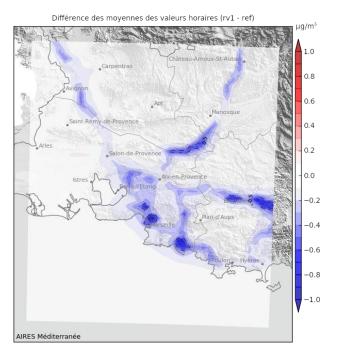



Figure 42 : Différence des moyennes des valeurs horaires en dioxyde d'azote sur les 153 jours de la modélisation

Les différences obtenues entre le scénario RV2 et l'état de référence sont négligeable.

Projet: 03SIM06R – Date de publication: 09/10 31/48

# 3. CONCLUSION

A travers cette étude, l'impact d'une réduction pérenne de la vitesse de circulation a été testé sur le domaine ESCOMPTE (centré sur Marseille et l'Etang-de-Berre). Dans un premier temps, les émissions de polluants ont été calculées en considérant cette mesure, puis, dans une deuxième phase, ces émissions ont été utilisées pour alimenter la plateforme régionale de modélisation AIRES Méditerranée afin de déterminer l'impact de cette mesure sur les concentrations de polluants (ozone et dioxyde d'azote).

L'étude de l'impact de cette mesure de réduction de vitesse (réduction de 30 km/h sans descendre en-dessous de 70 km/h) sur les émissions de polluants est globalement faible. Les paramètres influençant les émissions de polluants sont très variables d'un axe à un autre (trafic, vitesse autorisée, pourcentage de poids lourds, pente...). D'une manière générale sur la zone d'étude, la diminution des quantités de polluants émises est de l'ordre de -3 à -5 % (selon les composés). Toutefois, plusieurs informations peuvent être soulignées :

- Tout d'abord, parmi les principaux polluants étudiés ici, l'impact de cette mesure de réduction de vitesse entraine des gains d'émissions sur la totalité des axes rapides (autoroutes et voies rapides limitées à 110 km/h).
   Des augmentations d'émissions ont été constatées uniquement sur les routes à 90 km/h.
- L'étude des émissions au cas par cas a mis en évidence des réductions d'émissions significatives localement : sur certains axes, l'impact d'une réduction pérenne de la vitesse autorisée peut entrainer des diminutions de l'ordre de 20 % des quantités émises.
- De plus, l'impact de cette mesure sur la contribution au changement climatique a été étudié avec la quantification des émissions de CO<sub>2</sub>. Une réduction de la vitesse entraine une baisse des consommations de carburants et donc une réduction des émissions de CO<sub>2</sub>. Cette réduction dépasse 142 000 tonnes pour une application annuelle de cette mesure.

Dans un second temps, les concentrations horaires en ozone et en dioxyde d'azote ont été simulées par la plateforme régionale AIRES Méditerranée (modèle météorologique WRF / modèle chimique CHIMERE) sur une période de 5 mois (mai à septembre 2006). La simulation a d'abord concerné la situation réelle (état de référence) et les résultats de modélisation obtenus ont été validés par calcul d'indicateurs statistiques en comparaison avec les valeurs mesurées sur le réseau de stations permanentes d'Atmo PACA et AIRFOBEP.

Deux scénarios différents ont été testés : application de la mesure de réduction de vitesse de manière pérenne sur la période étudiée (scénario RV1) et application ponctuelle de la réduction de vitesse uniquement les 20 jours de déclenchement des mesures d'urgence (scénario RV2).

L'étude de l'impact de la réduction de vitesse sur la pollution de pointe indique :

- Une diminution des concentrations maximales en ozone (de l'ordre de quelques microgrammes) dans l'arrièrepays avec une légère augmentation des concentrations à proximité des grands axes et zones urbaines, en lien avec la diminution de la dégradation de l'ozone par le dioxyde d'azote.
- Une légère diminution des concentrations maximales de dioxyde d'azote le long des principaux axes routiers.

L'analyse du nombre d'occurrences de dépassement du seuil réglementaire de 180 µg/m³ en ozone pour chaque situation simulée indique un **léger gain en situation de réduction de vitesse**. Pour l'ensemble de ces tests, les résultats obtenus avec le scénario RV1 et le scénario RV2 sont similaires.

L'étude de l'impact de la réduction de vitesse sur la pollution chronique indique :

- Une différence peu significative sur le nombre de jours de dépassement de la valeur cible de 120 μg/m³ en ozone (moyenne sur 8 heures) : de -2 à +3 jours sur la période étudiée. Contrairement aux résultats précédents, une différence est notée entre les 2 scénarios simulés : seul le scénario RV1 contribue à une variation de cet indicateur. Le scénario RV2 n'entraine aucune modification du nombre de jours dépassant 120 μg/m³.
- L'étude de la différence entre les concentrations moyennes en dioxyde d'azote sur l'ensemble de la période étudiée indique une très légère diminution du NO<sub>2</sub> lorsque la réduction de vitesse est appliquée (-1 µg/m³ en moyenne sur les 5 mois).

Il pourrait également être intéressant d'étudier l'impact de ces mesures grâce aux outils de modélisation à haute résolution. Les projets futurs ou en cours comme le développement d'un observatoire de la qualité de l'air autour de

Projet: 03SIM06R – Date de publication: 09/10 32/48

#### ■■ Impact de la réduction de vitesse sur la pollution en ozone

l'autoroute A7 visant à étudier la mise en œuvre d'actions à différentes échelles, permettront dans les mois à venir de compléter ces connaissances.

De plus, cette étude considère uniquement le paramètre de réduction de vitesse autorisée. D'autres variables restent à tester comme l'impact engendré par une réduction simultanée des émissions de COV issues des activités industrielles (réduction temporaire lors du déclenchement des mesures d'urgence mais aussi réduction permanente issue de l'évolution de la réglementation).

Enfin, des paramètres complémentaires à la qualité de l'air méritent aussi d'être pris en compte dans l'évaluation des gains engendrés par ces mesures comme la réduction des nuisances sonores, les changements de comportement des usagers sur le long terme ou encore l'impact sur la sécurité routière.

Projet: 03SIM06R – Date de publication: 09/10 33/48

# 4. REFERENCES

- Atmo PACA, 2009 : Pollution atmosphérique et gaz à effet de serre, Inventaire des émissions 2004
- European Environment Agency, 2007: Emission inventory Guidebook, Technical report N°16/2007
- Cros, B., P. Durand, H. Cachier, P. Drobinski, E. Fréjafon, C. Kottmeier, P. Perros, J. Ponche, D. Robin, F. Saïd,
   G. Toupance et H. Wortham, 2004: The ESCOMPTE program: an overview. Atmospheric Research, 69 (3-4),
   241-279.
- Coll I., Lasry F., Fayet S., 2007 : Programme Primequal 2 Predit : simulation de scénarios de réduction d'émissions
- Skamarock W., Klemp J., Dudhia J., Gill D., Barker D., Duda M., Huang X., Wang W., Powers J.: A description
  of the Advenced Research WRF Version 3, NCAR Technical Note, NCAR/TN-475+STR, 2008.
- Wang W., Barker D., Bruyere C., Duda M., Dudhia J., Gill D., Michalakes J., and Rizvi S.: WRF Version 3
  Modeling System User's Guide, 2008, http://www.mmm.ucar.edu/wrf/users/docs/user guide V3/.
- Bessagnet B., Hodzic A., Vautard R., Beekman M., Cheinet S., Honeré C., Liousse C., and Rouil L.: Aerosol modelling with CHIMERE – preliminary evalutation at the continental scale, Atmos. Environ., 38, 2803-2817, 2004.
- Simon et al., 2006 Simon V., Dumergues L., Ponche J.L. & Torres L. (2006) The biogenic volatile organic compounds emission inventory in France - Application to plant ecosystems in the Berre-Marseilles area (France). Science of the Total Environment, in press.

Projet: 03SIM06R – Date de publication: 09/10 34/48

# **5. LISTE DES TABLEAUX ET FIGURES**

# **TABLEAUX**

| Tableau 1 : Composition du parc de VPE (parcs automobiles roulant 2006 et 2008, CITEPA)                                 | 10         |
|-------------------------------------------------------------------------------------------------------------------------|------------|
| FIGURES                                                                                                                 |            |
| Figure 1 : Exemple de l'évolution de la vitesse en fonction de la vitesse maximale autorisée                            | 4          |
| Figure 2 : Exemple d'évolution des émissions horaires de COV en fonction de la vitesse maximale autorisé                |            |
| Figure 3 : Impact de la réduction de vitesse sur les émissions de benzène                                               |            |
| Figure 4 : Analyse sectorielle des émissions de benzène (inventaire PACA 2004)                                          | 7          |
| Figure 5 : Analyse des contributions des émissions de benzène des transports routiers par catégorie de                  |            |
| véhicules                                                                                                               | 7          |
| Figure 6 : Evolution des émissions unitaires de benzène en fonction de la vitesse (véhicules particuliers               | _          |
| essence)                                                                                                                |            |
| Figure 7 : Evolution des émissions de benzène avec la vitesse pour un véhicule particulier essence moyen                |            |
| 2006 et en 2008                                                                                                         | გ          |
| Figure 8 : Impact de la réduction de vitesse sur les émissions d'oxydes d'azote                                         | 9<br>10    |
| Figure 9 : Analyse sectorielle des émissions de NO <sub>x</sub> (inventaire PACA 2004)                                  |            |
| Figure 10 : Analyse des contributions des émissions d'oxydes d'azote des transports routiers par catégorie véhicules    | ; ue<br>1∩ |
| Figure 11 : Evolution des émissions de NO <sub>x</sub> avec la vitesse pour un VPE, un VPD et un Poids Lourd moye       |            |
| selon le parc automobile en 2006                                                                                        |            |
| Figure 12 : Evolution des émissions de NO <sub>x</sub> avec la vitesse pour un VPE, un VPD moyens selon le parc         |            |
| automobile en 2006                                                                                                      | 11         |
| Figure 13 : Impact de la réduction de la vitesse sur les émissions de NO <sub>x</sub> (en % et en kg) par catégories de |            |
| véhicules sur un axe limité à 130 km/h avec 6 % PL (en bleu) et une route limitée à 90 km/h avec 20 % PL                |            |
| vert)                                                                                                                   | 11         |
| Figure 14 : Impact de la réduction de vitesse sur les émissions de PM10                                                 | 12         |
| Figure 15 : Analyse sectorielle des émissions de PM10 (Inventaire PACA 2004)                                            | 13         |
| Figure 16 : Analyse des contributions des émissions de PM10 des transports routiers par catégorie de                    |            |
| véhicules                                                                                                               | 13         |
| Figure 17 : Evolution des émissions de particules avec la vitesse par catégorie de véhicules                            |            |
| Figure 18 : Impact de la réduction de vitesse sur les émissions de CO                                                   |            |
| Figure 19 : Analyse des contributions des émissions de CO des transports routiers par catégorie de véhicu               |            |
|                                                                                                                         |            |
| Figure 20 : Evolution des émissions de CO avec la vitesse pour un véhicule particulier essence moyen en                 |            |
| 2006 et en 2008                                                                                                         | 15<br>16   |
| Figure 21: Impact de la reduction de vitesse sur les emissions de CO <sub>2</sub>                                       | 10         |
| Figure 22 : Analyse des contributions des émissions de CO <sub>2</sub> des transports routiers par catégorie de véhic   |            |
| Figure 23 : Evolution des émissions de CO <sub>2</sub> avec la vitesse pour trois types de véhicules                    |            |
| Figure 24 : Analyse sectorielle des émissions de COVNM dans les Bouches-du-Rhône (2004)                                 |            |
| Figure 25 : Contribution des émissions anthropiques et naturelles sur la production d'ozone                             |            |
| Figure 26 : Localisation du domaine « Escompte »                                                                        |            |
| Figure 27 : Comparaison observation / modélisation des températures maximales journalières sur l'ensem                  |            |
| des stations météo du domaine                                                                                           |            |
|                                                                                                                         |            |

#### ■■ Impact de la réduction de vitesse sur la pollution en ozone

| Figure 28 : Variation horaire de la température à 2 mètres sur la station d'Aix-en-Provence                                                       | 22          |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Figure 29 : Comparaison observation / modélisation des vitesses du vent à 10 mètres à la station de<br>Marignane                                  | 22          |
| Figure 30 : Comparaison observation / modélisation des maximums journaliers en ozone sur l'ensemble d<br>stations du domaine                      |             |
| Figure 31 : Variation horaire de la concentration en ozone à la station des Pennes-Mirabeau                                                       | 23          |
| Figure 32 : Maximum horaire modélisé en ozone et mesures maximales enregistrées aux stations le 15 ju<br>2006                                     |             |
| Figure 33 : Maximum horaire modélisé en ozone et mesures maximales enregistrées aux stations le 17 ju<br>2006                                     |             |
| Figure 34 : Maximum horaire modélisé en ozone et mesures maximales enregistrées aux stations le 18 ju<br>2006                                     | illet<br>25 |
| Figure 35 : Comparaison observation / modélisation des maximums journaliers en dioxyde d'azote sur les stations urbaines et de trafic du domaine  | 25          |
| Figure 36 : Maximum horaire modélisé en NO2 et mesures maximales enregistrées aux stations le<br>25 septembre 2006                                | 26          |
| Figure 37 : Différence du maximum journalier en ozone les 15 et 17 juillet 2006                                                                   | 27          |
| Figure 38 : Différence du maximum journalier en ozone le 18 juillet 2006                                                                          | 28          |
| Figure 39 : Différence du maximum journalier en dioxyde d'azote les 13 et 15 août 2006                                                            | 29          |
| Figure 40 : Nombre de jours de dépassement de la valeur cible 120 µg/m³ sur 8h                                                                    | 30          |
| Figure 41 : Différence du nombre de jours où la moyenne glissante sur 8h dépasse le 120 µg/m³ entre les<br>scénarios REF et RV1                   | s<br>30     |
| Figure 42 : Différence des moyennes des valeurs horaires en dioxyde d'azote sur les 153 jours de la modélisation                                  | 31          |
| Figure 43 : Evolution des émissions unitaires de NO <sub>x</sub> en fonction de la vitesse (pour différentes catégories véhicules et normes EURO) | -           |
| Figure 44 : Evolution des émissions unitaires de particules en fonction de la vitesse (pour différentes catégories de véhicules et normes EURO)   | 44          |
| Figure 45 : Evolution des émissions unitaires de CO <sub>2</sub> en fonction de la vitesse (pour différentes catégories véhicules et normes EURO) |             |
|                                                                                                                                                   |             |

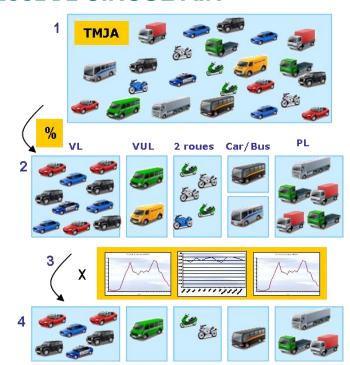
#### **6. ANNEXES**

#### ANNEXE 1: PRINCIPE DE CALCUL DE CIRCUL'AIR

CIRCUL'AIR calcule, pour chaque axe, les émissions annuelles du trafic routier selon le principe schématisé ici. Les données d'entrées à renseignées sont indiquées en \_\_\_\_\_.

#### I Estimation du trafic horaire

Le TMJA (1) est renseigné pour chaque axe routier.


Le % par type de véhicule (2) est aussi renseigné par axe, à partir de données collectées (% PL, % Bus, % Car) ou issues de la littérature (% 2roues, % VUL).

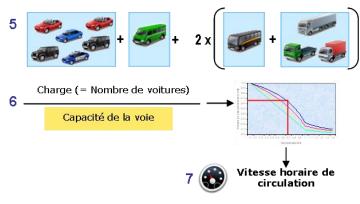
A partir de ces données, le **trafic annuel** pour chaque type de véhicule est alors défini par l'outil.

Les profils temporels (3) sont à intégrer dans CIRCUL'AIR selon le type de voie :

- profil par mois répartition du trafic annuel /mois
- profil par jour répartition du trafic mois / JO, S et D
- profil horaire répartition du trafic JO, S et D / heure

A partir de ces profils, CIRCUL'AIR calcule le trafic horaire par type de véhicule pour chaque de jour, de chaque mois de l'année (4).




#### II Estimation de la vitesse horaire du trafic

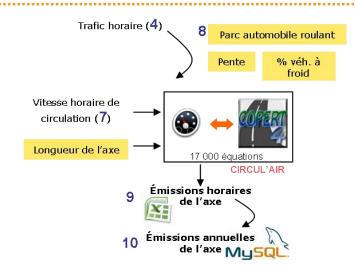
Le principe de CIRCUL'AIR est de définir, chaque heure, la **vitesse** des véhicules en estimant la congestion sur les axes.

La **charge horaire** est déterminée en considérant que : -les bus et PL occupent 2 fois plus de place sur la route que les VL; -les 2 roues ne participent pas à l'encombrement de l'axe (5).

La **capacité de la voie** est estimée à partir du nombre de voie et de la catégorie de l'axe (autoroute, route, ville).

Le **cœfficient de charge** (6) horaire obtenu est croisé avec des courbes théoriques (intégrées dans l'outil) pour en déduire une vitesse horaire (7).




#### III <u>Calcul des émissions annuelles</u>

CIRCUL'AIR contient l'ensemble des équations COPERT IV pour 215 types de véhicules (carburant, cylindrée, norme EURO...). Le trafic horaire (4) est réparti à l'aide du parc automobile roulant (8).

La longueur de l'axe doit également être renseignée.

CIRCUL'AIR est constitué d'une macro Excel calculant les émissions horaires de chaque axe (9).

Ces résultats sont agrégés à l'année puis stockés dans une base de données MySQL (10) par type de véhicules (VL, VUL, Car, Bus, 2 roues et PL).



Projet: 03SIM06R - Date de publication: 09/10

#### ANNEXE 2: IMPACT DE LA REDUCTION DE VITESSE SUR LES EMISSIONS DE BENZENE



Projet: 03SIM06R – Date de publication: 09/10 38/48

## Annexe 3 : Impact de la reduction de vitesse sur les emissions de $NO_{\scriptscriptstyle X}$



Projet: 03SIM06R – Date de publication: 09/10

#### ANNEXE 4: IMPACT DE LA REDUCTION DE VITESSE SUR LES EMISSIONS DE PM10



Projet: 03SIM06R – Date de publication: 09/10 40/48

#### ANNEXE 5: IMPACT DE LA REDUCTION DE VITESSE SUR LES EMISSIONS DE CO



Projet: 03SIM06R – Date de publication: 09/10 41/48

### ANNEXE 6: IMPACT DE LA REDUCTION DE VITESSE SUR LES EMISSIONS DE CO<sub>2</sub>



Projet: 03SIM06R – Date de publication: 09/10 42/48

## ANNEXE 7: EMISSIONS UNITAIRES DE NO<sub>X</sub> PAR CATEGORIE DE VEHICULES EN FONCTION DE L'EVOLUTION DES NORMES EURO

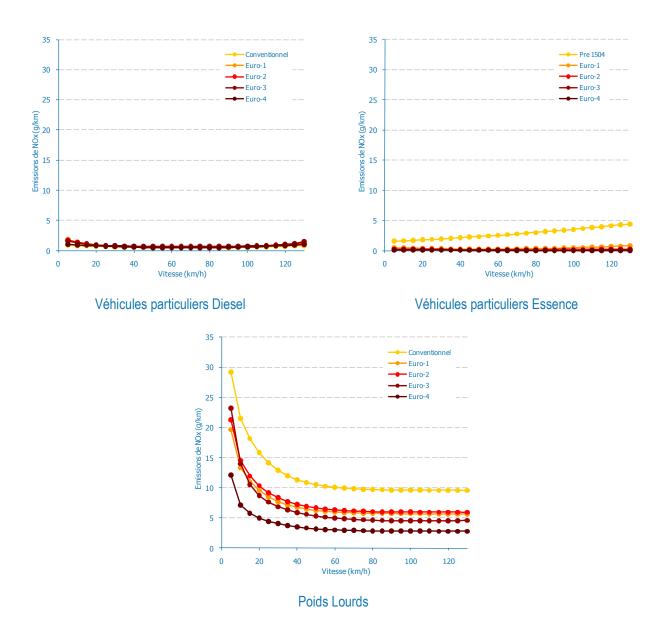



Figure 43 : Evolution des émissions unitaires de NO<sub>x</sub> en fonction de la vitesse (pour différentes catégories de véhicules et normes EURO)

Projet: 03SIM06R – Date de publication: 09/10 43/48

# ANNEXE 8 : EMISSIONS UNITAIRES DE PM (COMBUSTION) PAR CATEGORIE DE VEHICULES EN FONCTION DE L'EVOLUTION DES NORMES EURO

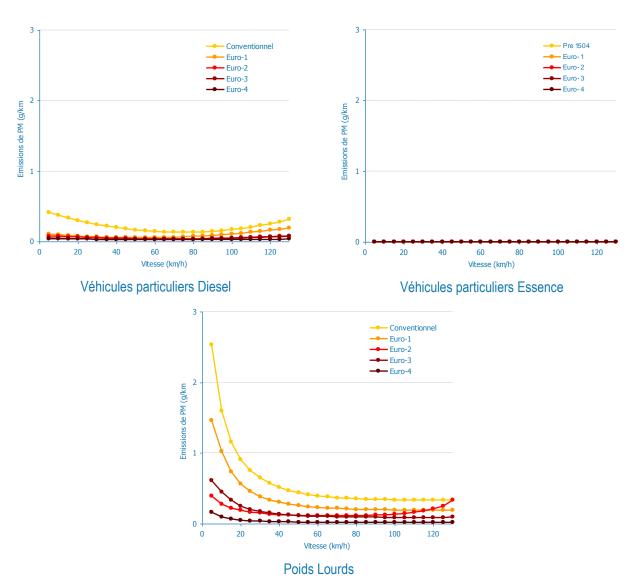
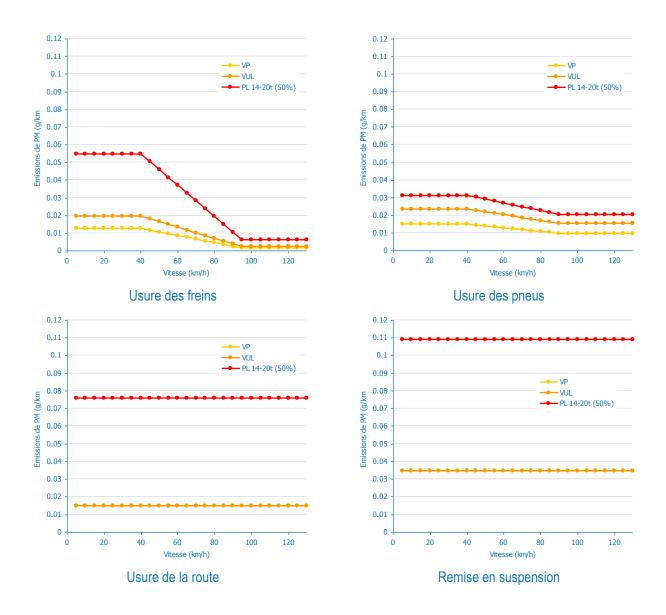




Figure 44 : Evolution des émissions unitaires de particules en fonction de la vitesse (pour différentes catégories de véhicules et normes EURO)

Projet: 03SIM06R – Date de publication: 09/10 44/48

# ANNEXE 9 : EMISSIONS UNITAIRES DE PM (NON COMBUSTION) PAR CATEGORIE DE VEHICULES



Projet: 03SIM06R – Date de publication: 09/10 45/48

#### ANNEXE 10 : EMISSIONS UNITAIRES DE CO<sub>2</sub> PAR CATEGORIE DE VEHICULES

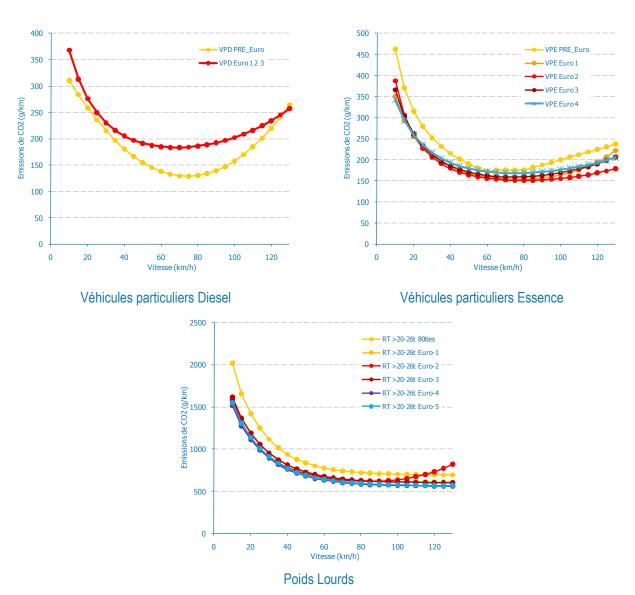



Figure 45 : Evolution des émissions unitaires de CO<sub>2</sub> en fonction de la vitesse (pour différentes catégories de véhicules et normes EURO)

Projet: 03SIM06R – Date de publication: 09/10 46/48

### ANNEXE 11 : RECAPITULATIF DES CONCENTRATIONS D'OZONE OBSERVEES EN 2006

|                                       |            |            |          |            |      |            |      |            |            |      |            |      |            | 1    |            |            |            |            |     |            |     |            |            |            |            |
|---------------------------------------|------------|------------|----------|------------|------|------------|------|------------|------------|------|------------|------|------------|------|------------|------------|------------|------------|-----|------------|-----|------------|------------|------------|------------|
| Maximums en µg/m³/h                   | 17/5       | 11/6       | 13/6     | 14/6       | 15/6 | 18/6       | 22/6 | 23/6       | 24/6       | 25/6 | 26/6       | 27/6 | 28/6       | 29/6 | 30/6       | 1/7        | 2/7        | 3/7        | 4/7 | 2/2        | 2/9 | 2/6        | 10/7       | 11/7       | 12/7       |
| Bouches-du-Rhône                      |            | l .        | l .      | l .        | l .  |            |      |            | l .        |      | l .        |      |            |      |            |            |            |            |     | l .        |     |            |            |            |            |
| Aix Ecole d'Arts                      | 214        | 170        | 133      | 193        | 146  | 198        | 132  | 133        | 159        | 159  | 169        | 211  | 198        | 140  | 132        | 200        | 202        | 148        | 160 | 153        | 145 | 126        | 180        | 177        | 244        |
| Aix Jas de Bouffan                    | 214        | 164        | 137      | 190        | 149  | 186        | 137  | 135        | 160        | 173  | 177        | 214  | 214        | 147  | 150        | 208        | 213        | 153        | 162 | 151        | 152 | 132        | 183        | 175        | 241        |
| Aix Les Platanes                      | 235        | 178        | 147      | 198        | 156  | 191        | 132  | 133        | 170        | 158  | 184        | 220  | 217        | 147  | 146        | 218        | 229        | 156        | 164 | 171        | 151 | 129        | 204        | 180        | 259        |
| Bouc Bel Air                          | 157        | 143        | 131      | 175        | 138  | 189        | 127  | 127        | 146        | 178  | 177        | 158  | 168        | 145  | 117        | 181        | 182        | 138        | 160 | 128        | 128 | 136        | 154        | 158        | 190        |
| Cadarache/ V. de la Durance           | 239        | 168        | 172      | 203        | 179  | 130        | 138  | 142        | 187        | 163  | 183        | 236  | 227        | 140  | 150        | 251        | 217        | 181        | 182 | 167        | 158 | 117        | 226        | 160        | 204        |
| Rousset                               | 138        | 160        | 149      | 174        | 178  | 216        | 157  | 135        | 175        | 148  | 191        | 195  | 171        | 154  | 149        | 217        | 198        | 154        | 170 | 156        | 138 | 146        | 179        | 177        | 205        |
| Aubagne Est Pénitents                 | 124        | 147        | 137      | 140        | 137  | 150        | 158  | 128        | 155        | 144  | 146        | 162  | 136        | 163  | 150        | 162        | 170        | 139        | 170 | 148        | 159 | 155        | 146        | 209        | 160        |
| La Ciotat                             | 101        | 129        | 123      | 128        | 112  | 122        | 160  | 141        | 112        | 145  | 153        | 121  | 118        | 141  | 159        | 171        | 137        | 99         | 135 | 129        | 168 | 145        | 124        | 204        | 149        |
| Marseille Cinq Avenues                | 112        | 138        | 118      | 130        | 118  | 123        | 150  | 108        | 125        | 136  | 165        | 119  | 106        | 142  | 135        | 148        | 144        | 110        | 148 | 134        | 154 | 149        | 126        | 151        | 143        |
| Marseille Sainte Marguerite           | 106        | 154        | 132      | 133        | 135  | 138        | 159  | 118        | 146        | 151  | 156        | 150  | 124        | 157  | 145        | 184        | 160        | 128        | 172 | 161        | 172 | 172        | 140        | 192        | 153        |
| Plan de Cuques / Allauch              | 139        | 155        | 131      | 153        | 133  | 147        | 159  | 117        | 158        | 153  | 185        | 145  | 147        | 166  | 166        | 179        | 177        | 143        | 179 | 155        | 186 | 162        | 146        | 190        | 169        |
| Pennes Mirabeau                       | 162        | 151        | 130      | 163        | 127  | 187        | 146  | 136        | 145        | 195  | 149        | 144  | 149        | 150  | 158        | 190        | 168        | 113        | 141 | 143        | 144 | 150        | 139        | 191        | 203        |
| Vallée de l'Huveaune                  | 111        | 151        | 143      | 143        | 141  | 155        | 177  | 129        | 160        | 156  | 157        | 168  | 137        | 169  | 158        | 173        | 174        | 142        | 177 | 159        | 172 | 158        | 157        | 189        | 160        |
| Arles                                 | 143        | 130        | 137      | 113        | 121  | 139        | 120  | 111        | 149        | 150  | 112        | 152  | 159        | 128  | 141        | 166        | 203        | 108        | 127 | 140        | 113 | 98         | 130        | 140        | 152        |
| Berre l'Etang                         | 186        | 171        | 113      | 134        | 114  | 131        | 118  | 104        | 117        | 139  | 129        | 158  | 167        | 127  | 136        | 192        | 271        | 96         | 118 | 132        | 115 | 157        | 160        | 140        | 200        |
| Fos Carabins                          | 181        | 146        | 140      | 119        | 125  | 148        | 130  | 122        | 119        | 152  | 167        | 123  | 214        | 142  | 142        | 184        | 205        | 112        | 134 | 146        | 123 | 151        | 151        | 133        | 189        |
| Istres                                | 151        | 124        | 108      | 96         | 110  | 135        | 120  | 122        | 119        | 152  | 159        | 134  | 192        | 142  | 142        | 180        | 205        | 107        | 134 | 146        | 123 | 124        | 146        | 133        | 189        |
| Marignane Ville                       | 157        | 155        | 119      | 161        | 114  | 187        | 120  | 114        | 128        | 164  | 126        | 176  | 121        | 135  | 126        | 213        | 195        | 107        | 157 | 134        | 116 | 198        | 131        | 159        | 208        |
| <u> </u>                              | 178        | 161        | 137      | 123        | 131  | 143        | 136  | 126        | 146        | 159  | 174        | 147  | 182        | 155  | 149        | 252        | 288        | 121        | 158 | 160        | 136 | 183        | 164        | 148        | 190        |
| Martigues ND des Marins<br>Miramas    | 168        | 165        | 145      | 131        | 160  | 187        | 126  | 115        | 159        | 179  | 174        | 214  | 210        | 147  | 149        | 198        | 220        | 139        | 150 | 169        | 126 | 119        | 176        | 148        | 206        |
| Port de Bouc La Lèque                 | 172        | 132        | 127      | 150        | 127  | 146        | 126  | 113        | 119        | 143  | 201        | 126  | 181        | 133  | 141        | 175        | 145        | 113        | 137 | 151        | 115 | 181        | 190        | 125        | 227        |
| Rognac Barjaquets                     | 237        | 188        | 126      | 144        | 139  | 155        | 147  | 141        | 149        | 183  | 164        | 202  | 196        | 157  | 165        | 255        | 311        | 130        | 151 | 170        | 141 | 167        | 177        | 243        | 242        |
| Salon de Provence                     | 177        | 188        | 148      | 151        | 157  | 172        | 125  | 128        | 160        | 194  | 156        | 180  | 193        | 139  | 149        | 192        | 229        | 137        | 151 | 159        | 129 | 101        | 187        | 151        | 195        |
|                                       | 204        | 123        | 125      | 152        | 132  |            | 160  | 125        | 126        | 154  |            | 147  | 160        | 154  | 156        | 254        | 159        | 130        | 140 |            | 138 | 200        |            | 179        | 217        |
| Sausset les Pins                      |            |            | 177      |            | 148  | 128        | 115  |            |            | 170  | 201        | 172  |            | 145  |            |            |            |            | 141 | 162<br>174 | 105 |            | 186<br>152 | _          |            |
| Saint Remy de Provence                | 175<br>162 | 150<br>127 | 122      | 131<br>113 | 133  | 131<br>161 | 113  | 121<br>107 | 155<br>120 | 147  | 129<br>123 | 127  | 148<br>148 | 136  | 138<br>143 | 169<br>158 | 206<br>186 | 160<br>119 | 138 |            | 118 | 108<br>116 | 161        | 152<br>147 | 169<br>203 |
| Saintes Maries de la Mer<br>Vitrolles | 213        | 183        | 135      | 183        | 136  | 180        | 143  | 138        | 154        | 186  | 163        | 203  | 173        | 150  | 160        | 239        | 285        | 143        | 160 | 158<br>162 | 142 | 200        | 182        | 308        | 259        |
| Vaucluse                              | 213        | 103        | 133      | 103        | 130  | 100        | 143  | 130        | 134        | 100  | 103        | 203  | 1/3        | 150  | 100        | 239        | 200        | 143        | 100 | 102        | 142 | 200        | 102        | 300        | 209        |
| Apt                                   | 179        | 205        | 185      | 155        | 187  | 168        | 138  | 135        | 189        | 166  | 151        | 203  | 162        | 137  | 147        | 184        | 189        | 193        | 199 | 165        | 149 | 127        | 174        | 191        | 177        |
| Avignon Arrousaire                    | 146        | 159        | 182      | 138        | 160  | 136        | 131  | 140        | 182        | 171  | 141        | 166  | 160        | 155  | 155        | 175        | 187        | 167        | 152 | 179        | 112 | 114        | 156        | 179        | 198        |
| Avignon Mairie                        | 128        | 140        | 160      | 117        | 142  | 117        | 114  | 122        | 160        | 146  | 120        | 148  | 138        | 134  | 132        | 148        | 170        | 144        | 135 | 155        | 95  | 90         | 136        | 148        | 164        |
| Comtat Venaissin                      | 160        | 177        | 202      | 155        | 176  | 141        | 112  | 129        | 198        | 168  | 142        | 175  | 131        | 139  | 151        | 163        | 164        | 199        | 180 | 204        | 122 | 112        | 158        | 167        | 155        |
| Le Pontet                             | 148        |            | 175      | 127        | 156  | 128        | 108  | 127        | 179        | 169  | 134        | 162  | 145        | 138  | 134        | 143        | 167        | 166        | 143 | 182        | 91  | 94         | 152        | 168        | 157        |
| Cadarache/ V. de la Durance           | 239        | 168        | 172      | 203        | 179  | 130        | 138  | 142        | 187        | 163  | 183        | 236  | 227        | 140  | 150        | 251        | 217        | 181        | 182 | 167        | 158 | 117        | 226        | 160        | 204        |
| Manosque                              | 198        | 152        | 184      | 177        | 179  | 113        | 136  | 129        | 183        | 139  | 165        | 216  | 151        | 147  | 145        | 217        | 209        | 190        | 180 | 151        | 145 | 115        | 190        | 160        | 170        |
| Saint Remy de Provence                | 175        | 150        | 177      | 131        | 148  | 131        | 115  | 121        | 155        | 170  | 129        | 172  | 148        | 145  | 138        | 169        | 206        | 160        | 141 | 174        | 105 | 108        | 152        | 152        | 169        |
| Gard Rhodanien 2 (Air LR)             |            | 100        | 167      | 141        | 163  | 127        | 124  | 139        | 176        | 171  | 139        | 162  | 152        | 148  | 162        | 178        | 204        | 141        | 163 | 178        | 108 | 111        | 165        | 184        | 199        |
| Alpes de Hautes Provence              |            |            |          |            |      |            |      |            |            |      |            |      |            |      |            |            |            |            |     |            |     |            |            |            |            |
| Manosque                              | 198        | 152        | 184      | 177        | 179  | 113        | 136  | 129        | 183        | 139  | 165        | 216  | 151        | 147  | 145        | 217        | 209        | 190        | 180 | 151        | 145 | 115        | 190        | 160        | 170        |
| Château Arnoux - Saint Auban          | 175        | 157        | 182      | 164        | 186  | 116        | 127  | 124        | 161        | 136  | 146        | 181  | 128        | 140  | 146        | 175        | 175        | 158        | 167 | 156        | 154 | 99         | 198        | 207        | 167        |
| Apt                                   | 179        | 205        | 185      | 155        | 187  | 168        | 138  | 135        | 189        | 166  | 151        | 203  | 162        | 137  | 147        | 184        | 189        | 193        | 199 | 165        | 149 | 127        | 174        | 191        | 177        |
| Cadarache/ V. de la Durance           | 239        | 168        | 172      | 203        | 179  | 130        | 138  | 142        | 187        | 163  | 183        | 236  | 227        | 140  | 150        | 251        | 217        | 181        | 182 | 167        | 158 | 117        | 226        | 160        | 204        |
| Var                                   |            | •          | •        |            |      |            |      |            |            |      |            |      |            |      |            |            |            |            |     | •          |     |            |            |            |            |
| Plan d'Aups / Sainte Baume            | 105        | 116        | 143      | 172        | 148  | 145        | 199  | 167        | 195        | 152  | 158        | 159  | 172        | 200  | 166        | 177        | 183        | 157        | 187 | 175        | 159 | 152        | 152        | 220        | 175        |
| Brignoles                             | 146        | 161        | 150      | 173        | 156  | 122        | 172  | 176        | 161        | 151  | 146        | 154  | 137        | 181  | 192        | 155        | 173        | 146        | 173 | 154        | 141 | 135        | 145        | 201        | 184        |
| Hyères                                | 107        | 136        | 131      | 130        | 119  | 122        | 179  | 138        | 138        | 146  | 112        | 105  | 107        | 160  | 191        | 150        | 150        | 117        | 158 | 138        | 136 | 131        | 134        | 157        | 166        |
| La Seyne sur Mer                      |            |            |          |            |      |            |      |            |            |      |            |      |            |      |            |            |            |            |     |            |     |            |            |            |            |
| Toulon Arsenal                        | 100        | 135        | 123      | 130        | 119  | 112        | 166  | 137        | 128        | 146  | 132        | 107  | 99         | 148  | 173        | 173        | 158        | 107        | 131 | 130        | 145 | 144        | 125        | 185        | 138        |
| La Valette du Var                     | 110        | 142        | 137      | 133        | 132  | 125        | 177  | 153        | 134        | 154  | 106        | 112  | 108        | 165  | 191        | 143        | 137        | 121        | 163 | 146        | 150 | 141        | 142        | 199        | 167        |
| La Ciotat                             | 101        | 129        | 123      | 128        | 112  | 122        | 160  | 141        | 112        | 145  | 153        | 121  | 118        | 141  | 159        | 171        | 137        | 99         | 135 | 129        | 168 | 145        | 124        | 204        | 149        |
| Alpes-Maritimes                       |            |            |          |            |      |            |      |            |            |      |            |      |            |      |            |            |            |            |     |            |     |            |            |            |            |
| Adréchas                              | 117        | 156        | 177      | 186        | 170  | 118        | 192  | 171        | 173        | 138  | 150        | 174  | 174        | 169  | 167        | 179        | 177        | 180        | 182 | 172        | 150 | 156        | 184        | 197        | 193        |
| Cians                                 | 111        | 146        | 170      | 172        | 161  | 109        | 119  | 164        | 160        | 138  | 139        | 158  | 135        | 165  | 168        | 166        | 168        | 161        | 178 | 166        | 157 | 122        | 160        | 170        | 162        |
| Antibes Jean Moulin                   | 113        | 132        | 132      | 140        | 128  | 126        | 139  | 141        | 144        | 162  | 108        | 112  | 145        | 154  | 152        | 136        | 179        | 160        | 178 | 135        | 128 | 141        | 174        | 201        | 187        |
| Cannes Broussailles                   | 108        | 146        | 135      | 131        | 122  | 128        | 134  | 127        | 114        | 161  | 108        | 88   | 137        | 144  | 140        | 124        | 175        | 154        | 167 | 153        | 129 | 135        | 161        | 195        | 174        |
| Grasse Clavecin                       | 97         | 146        | 131      | 130        | 117  | 123        | 99   | 126        | 152        | 158  | 119        | 109  | 132        | 135  | 150        | 140        | 161        | 154        | 155 | 150        | 137 | 149        | 143        | 177        | 172        |
| Cagnes Ladoumègue                     | 119        | 139        | 137      | 135        | 125  | 126        | 138  | 131        | 128        | 159  | 100        | 101  | 140        | 143  | 139        | 129        | 191        | 127        | 188 | 145        |     |            |            | 186        | 186        |
| Nice Aéroport                         | 124        |            | 138      | 153        | 141  | 139        | 147  | 150        | 141        | 178  | 122        | 111  | 156        | 128  | 146        | 165        | 213        | 150        | 200 | 156        | 145 | 159        | 176        | 220        | 193        |
| Nice Ouest Botanique                  | 114        | 145        | 144      | 129        |      | 125        | 119  | 155        | 146        | 175  | 119        | 127  | 159        | 157  | 158        | 169        | 245        | 169        | 193 | 164        | 156 | 158        | 171        | 212        | 201        |
| Contes 2                              | 114        | 135        | 130      | 147        | 134  | 119        | 144  |            |            |      |            |      |            |      |            |            |            |            |     |            |     |            |            |            |            |
| Hautes Alpes                          |            |            |          |            |      |            |      |            |            |      |            |      |            |      |            |            |            |            |     |            |     |            |            |            |            |
| Briançon                              | <u> </u>   |            |          |            |      |            |      | 229        |            |      |            |      |            |      |            | 204        | 201        |            |     |            |     |            | 181        | لـــــا    |            |
| Gap05                                 |            | <u> </u>   | <u> </u> | <u> </u>   |      |            |      |            | <u> </u>   |      | <u> </u>   |      |            |      |            |            |            |            |     | <u> </u>   |     |            |            | لـــــا    | <u> </u>   |
|                                       |            |            |          |            |      |            |      |            |            |      |            |      |            |      |            |            |            |            |     |            |     |            |            |            |            |

Projet: 03SIM06R – Date de publication: 09/10 47/48

| Maximuma an ug/m³/h                                 | 13/7       | 14/7       | 15/7       | 2/91       | 17/7       | 18/7       | 19/7       | 20/7       | 21/7       | 1/         | 1/         | 24/7       | 1/         | 26/7       | 11         | <i>L)</i>  | 11         | 4/9        | 6/6        | 11/9       | 12/9       |
|-----------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Maximums en μg/m³/h                                 | 13         | 4          | 15         | 16         | 17         | 18         | 18         | 20         | 21         | 22/7       | 23/7       | 24         | 25/7       | 26         | 27/7       | 30/7       | 31/7       | /4         | 6          | 11         | 12         |
| Bouches-du-Rhône                                    | l          | l          | l          |            |            | l          |            |            |            |            | l          |            | l          |            |            |            |            |            |            |            |            |
| Aix Ecole d'Arts                                    | 225        | 160        | 172        | 183        | 209        | 164        | 167        | 160        | 186        | 162        | 151        | 230        | 175        | 247        | 121        | 171        | 190        | 145        | 146        | 139        | 142        |
| Aix Jas de Bouffan                                  | 233        | 170        | 175        | 192        | 225        | 171        | 178        | 172        | 188        | 163        | 150        | 233        | 178        | 262        | 131        | 172        | 198        | 145        | 143        | 140        | 141        |
| Aix Les Platanes                                    | 243        |            |            |            |            |            |            | 175        | 195        | 169        | 151        | 230        | 186        | 242        | 139        | 171        | 202        | 148        | 141        | 141        | 127        |
| Bouc Bel Air                                        | 190        | 161        | 171        | 229        | 186        | 164        | 168        | 131        | 162        | 156        | 152        | 166        | 150        | 184        | 134        | 169        | 175        | 112        | 119        | 128        | 136        |
| Cadarache/ V. de la Durance                         | 174        | 155        | 179        | 160        | 215        | 171        | 203        | 198        | 206        | 208        | 141        | 191        | 170        | 242        | 147        | 135        | 178        | 187        | 140        | 127        | 142        |
| Rousset                                             | 208        | 152        | 182        |            | 197        | 162        | 177        | 159        | 186        | 179        | 155        | 217        | 196        | 215        | 132        | 181        | 146        | 127        | 153        | 124        | 146        |
| Aubagne Est Pénitents                               | 180        | 158        | 180        | 179        | 170        | 174        | 175        | 147        | 174        | 142        | 189        | 190        | 152        | 149        | 133        | 183        | 180        | 117        | 131        | 122        | 137        |
| La Ciotat                                           | 145        | 227        | 175        | 195        | 241        | 152        | 146        | 130        | 157        | 135        | 181        | 156        | 131        | 117        | 98         | 163        | 167        | 102        | 114        | 112        | 130        |
| Marseille Cinq Avenues  Marseille Sainte Marguerite | 162<br>175 | 145<br>169 | 163<br>184 | 154<br>173 | 161<br>166 | 148<br>176 | 146<br>173 | 119        | 117<br>115 | 168<br>149 | 157<br>162 | 159<br>165 | 118<br>142 | 126<br>123 | 108<br>122 | 171<br>171 | 228<br>222 | 93<br>114  | 116<br>134 | 106<br>135 | 124<br>154 |
| Plan de Cuques / Allauch                            | 190        | 109        | 104        | 1/3        | 182        | 166        | 167        | 132        | 169        | 220        | 174        | 185        | 140        | 122        | 129        | 177        | 224        | 101        | 134        | 127        | 147        |
| Pennes Mirabeau                                     | 169        | 159        | 168        | 160        | 195        | 158        | 162        | 134        | 186        | 189        | 159        | 192        | 136        | 193        | 115        | 166        | 278        | 102        | 129        | 122        | 120        |
| Vallée de l'Huveaune                                | 183        | 168        |            |            | 180        | 182        | 182        | 137        | 166        | 162        | 185        | 179        | 162        | 132        | 130        | 160        | 188        | 119        | 136        | 133        | 157        |
| Arles                                               | 158        | 159        | 153        | 155        | 151        | 129        | 154        | 125        | 119        | 151        | 145        | 146        | 150        | 103        | 106        | 142        | 143        | 113        | 134        | 123        |            |
| Berre l'Etang                                       | 218        | 159        | 237        | 217        | 212        | 161        | 162        | 173        | 164        | 215        | 155        | 233        | 161        | 276        | 118        | 157        | 195        | 139        | 130        | 163        |            |
| Fos Carabins                                        | 193        | 186        | 189        | 180        | 156        | 156        | 146        | 125        | 108        | 212        | 143        | 178        | 129        | 155        | 98         | 141        | 162        | 109        | 131        | 138        |            |
| Istres                                              | 178        | 172        | 201        | 179        | 160        | 145        | 138        | 154        | 115        | 191        | 148        | 188        | 138        | 201        | 107        | 146        | 154        | 94         | 120        | 119        |            |
| Marignane Ville                                     | 182        | 139        | 162        | 184        | 270        | 135        | 134        | 138        | 144        | 191        | 144        | 183        | 132        | 252        | 94         | 163        | 150        | 104        | 120        | 113        |            |
| Martigues ND des Marins                             | 178        | 158        | 187        | 180        | 174        | 157        | 138        | 143        | 121        | 172        | 146        | 162        | 127        | 213        | 107        | 145        | 160        | 107        | 135        | 130        |            |
| Miramas                                             | 211        | 169        | 209        | 193        | 197        | 175        | 178        | 198        | 143        | 187        | 139        | 212        | 162        | 201        | 133        | 138        | 150        | 131        | 153        | 149        |            |
| Port de Bouc La Lèque  Rognac Barjaquets            | 184<br>212 | 218<br>160 | 213<br>211 | 208        | 163<br>258 | 162<br>168 | 141<br>170 | 119<br>168 | 113<br>172 | 166<br>217 | 147<br>157 | 165<br>242 | 127<br>169 | 128<br>265 | 106<br>126 | 132<br>165 | 180<br>229 | 116<br>147 | 128<br>144 | 135<br>142 |            |
| Salon de Provence                                   | 202        | 162        | 203        | 197        | 182        | 171        | 179        | 181        | 146        | 195        | 148        | 219        | 188        | 209        | 124        | 144        | 166        | 148        | 169        | 145        |            |
| Sausset les Pins                                    | 191        | 192        | 199        | 221        | 209        | 161        | 153        | 140        | 118        | 139        | 160        | 189        | 132        | 139        | 111        | 145        | 173        | 108        | 148        | 138        |            |
| Saint Remy de Provence                              | 161        | 184        | 164        | 159        | 163        | 183        | 176        | 176        | 155        | 167        | 150        | 167        | 189        | 145        | 144        | 138        | 142        | 135        | 141        | 135        |            |
| Saintes Maries de la Mer                            | 159        | 141        | 175        | 148        | 145        | 137        | 138        | 129        | 111        | 127        | 126        | 151        | 138        | 132        | 128        | 120        | 120        | 113        | 151        | 152        |            |
| Vitrolles                                           | 218        | 160        | 204        | 209        | 284        | 162        | 165        | 174        | 176        | 212        | 161        | 252        | 158        | 327        | 118        | 185        | 218        | 137        | 132        | 135        |            |
| Vaucluse                                            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Apt                                                 | 164        | 149        | 165        |            | 175        | 184        | 198        | 188        | 172        | 166        | 140        | 201        | 226        | 188        | 159        |            |            | 147        | 181        | 183        | 156        |
| Avignon Arrousaire                                  | 168        | 166        | 172        | 164        | 190        | 198        | 169        | 184        | 169        | 187        | 159        | 164        | 198        | 174        | 155        | 157        | 168        | 122        | 152        | 136        | 137        |
| Avignon Mairie Comtat Venaissin                     | 144<br>148 | 153<br>145 | 145<br>162 | 143<br>154 | 170<br>153 | 177<br>201 | 156<br>183 | 161<br>188 | 150<br>163 | 155<br>160 | 135<br>136 | 149<br>160 | 170<br>217 | 147<br>179 | 143<br>151 | 131<br>127 | 147<br>145 | 111        | 133<br>147 | 125<br>163 | 127<br>160 |
| Le Pontet                                           | 143        | 158        | 154        | 146        | 158        | 177        | 158        | 171        | 163        | 162        | 142        | 148        | 196        | 160        | 138        | 136        | 142        | 117        | 147        | 135        | 138        |
| Cadarache/ V. de la Durance                         | 174        | 155        | 179        | 160        | 215        | 171        | 203        | 198        | 206        | 208        | 141        | 191        | 170        | 242        | 147        | 135        | 178        | 187        | 140        | 127        | 142        |
| Manosque                                            | 151        | 142        | 154        | 148        | 173        | 157        | 195        | 191        | 170        | 166        | 136        | 189        | 159        | 199        | 142        | 139        | 195        | 168        | 126        | 121        | 131        |
| Saint Remy de Provence                              | 161        | 184        | 164        | 159        | 163        | 183        | 176        | 176        | 155        | 167        | 150        | 167        | 189        | 145        | 144        | 138        | 142        | 135        | 141        | 135        | 0          |
| Gard Rhodanien 2 (Air LR)                           | 168        | 165        | 179        | 163        | 170        | 190        | 183        | 167        | 166        | 175        | 149        | 168        | 185        | 161        | 181        | 144        | 156        | 130        | 180        | 166        | 129        |
| Alpes de Hautes Provence                            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Manosque                                            | 151        | 142        | 154        | 148        | 173        | 157        | 195        | 191        | 170        | 166        | 136        | 189        | 159        | 199        | 142        | 139        | 195        | 168        | 126        | 121        | 131        |
| Château Arnoux - Saint Auban                        | 162        | 196        | 189        | 158        | 155        | 404        | 166        | 167        | 146        | 178        | 152        | 223        | 192        | 162        | 150        | 140        | 177        | 147        | 130        | 128        | 131        |
| Apt Cadarache/ V. de la Durance                     | 164<br>174 | 149<br>155 | 165<br>179 | 160        | 175<br>215 | 184<br>171 | 198<br>203 | 188<br>198 | 172        | 166        | 140<br>141 | 201<br>191 | 226<br>170 | 188<br>242 | 159        | 125        | 178        | 147<br>187 | 181<br>140 | 183<br>127 | 156<br>142 |
| Var                                                 | 1/4        | 100        | 179        | 100        | 213        | 17.1       | 203        | 190        | 206        | 208        | 141        | 191        | 170        | 242        | 147        | 135        | 170        | 107        | 140        | 121        | 142        |
| Plan d'Aups / Sainte Baume                          | 186        | 159        | 180        | 170        | 177        | 176        | 178        | 181        | 223        | 168        | 200        | 203        | 171        | 171        | 132        | 197        | 147        | 142        | 136        | 128        | 143        |
| Brignoles                                           | 172        | 166        | 182        | 164        | 172        | 155        | 161        | 179        | 210        | 187        | 199        | 169        | 180        | 165        | 134        | 169        | 159        | 120        | 129        | 140        | 148        |
| Hyères                                              | 163        | 162        | 197        | 159        | 157        | 158        | 140        | 130        | 149        | 116        | 184        | 126        | 120        | 120        | 116        | 161        | 159        | 95         | 120        | 126        | 146        |
| La Seyne sur Mer                                    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Toulon Arsenal                                      | 153        | 156        | 180        | 143        | 158        | 130        | 125        | 130        | 145        | 121        | 173        | 116        | 120        | 112        | 113        | 175        | 165        | 102        | 128        | 113        | 138        |
| La Valette du Var                                   | 166        | 152        | 200        | 170        | 164        | 172        | 148        | 137        | 190        | 122        | 184        | 157        | 122        | 112        | 128        | 171        | 160        | 103        | 126        | 137        | 159        |
| La Ciotat                                           | 145        | 227        | 175        | 195        | 241        | 152        | 146        | 130        | 157        | 135        | 181        | 156        | 131        | 117        | 98         | 163        | 167        | 102        | 114        | 112        | 130        |
| Alpes-Maritimes Adréchas                            | 134        | 151        | 160        | 164        | 168        | 161        | 195        | 191        | 176        | 192        | 162        | 175        | 162        | 162        | 138        | 155        | 167        | 118        | 125        | 132        | 143        |
| Cians                                               | 133        | 134        | 152        | 161        | 157        | 152        | 201        | 189        | 181        | 167        | 152        | 167        | 155        | 163        | 136        | 146        | 151        | 121        | 138        | 129        | 143        |
| Antibes Jean Moulin                                 | 153        | 188        | 196        | 149        | 130        | 152        | 172        | 155        | 149        | 146        | 129        | 179        | 160        | 153        | 143        | 137        | 152        | 84         | 128        | 140        | 157        |
| Cannes Broussailles                                 | 142        | 175        | 183        | 147        | 136        | 150        | 166        | 150        | 162        | 136        | 128        | 166        | 153        | 152        | 138        | 151        | 139        | 82         | 122        | 134        | 153        |
| Grasse Clavecin                                     | 141        | 174        | 169        | 152        | 131        | 143        | 153        | 161        | 162        | 149        | 147        | 172        | 162        | 145        | 149        | 141        | 143        | 69         | 113        | 123        | 120        |
| Cagnes Ladoumègue                                   | 146        | 179        | 176        | 142        | 116        | 134        | 170        | 155        | 147        | 143        | 128        | 139        | 137        | 148        | 143        | 132        | 146        | 84         | 123        | 137        | 143        |
| Nice Aéroport                                       | 169        | 196        | 203        | 164        | 145        | 147        | 183        | 165        | 163        | 157        | 158        | 156        | 177        | 166        | 169        | 153        | 169        | 102        | 154        | 158        | 180        |
| Nice Ouest Botanique                                | 160        | 200        | 198        | 167        | 172        | 163        | 176        | 138        | 145        | 127        | 131        | 251        | 178        | 153        | 238        | 124        | 135        | 134        | 116        | 130        | 149        |
| Contes 2                                            | <u> </u>   | <u> </u>   | <u> </u>   |            |            | 165        | 194        | 191        | 178        | 191        | 168        | 186        | 192        | 179        | 179        | 177        | 168        | 87         | 126        | 136        | 139        |
| Hautes Alpes                                        | l          | 1          | l          |            |            | 1          |            |            |            |            |            |            | ı —        |            |            |            |            |            |            |            |            |
| Briançon<br>Gap05                                   |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Capoo                                               | ·          | ·          |            |            |            |            |            |            |            |            |            | 1          |            |            |            |            |            |            |            |            |            |

Projet: 03SIM06R - Date de publication: 09/10