

Contents lists available at ScienceDirect

Environmental Research

journal homepage: www.elsevier.com/locate/envres

Long-term exposure to ambient air pollution is associated with an increased incidence and mortality of acute respiratory distress syndrome in a large French region

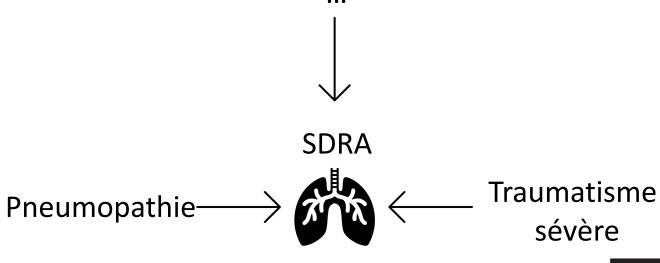
Laëtitia Gutman ^{a,b,*}, Vanessa Pauly ^{b,c}, Veronica Orleans ^c, Damien Piga ^d, Yann Channac ^c, Alexandre Armengaud ^d, Laurent Boyer ^{b,c}, Laurent Papazian ^{a,b}

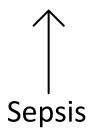
- ^a Assistance Publique Hôpitaux de Marseille, Hôpital Nord, Médecine Intensive Réanimation, 13015, Marseille, France
- b Aix-Marseille Université, Faculté de Médecine, Centre d'Etudes et de Recherches sur les Services de Santé et qualité de vie EA 3279, 13005, Marseille, France
- ^c Unité d'Analyse des données de Santé, Assistance Publique, Hôpitaux de Marseille, 13005, Marseille, France
- d AtmoSud, Observatoire de la qualité de l'air en région Sud Provence-Alpes-Côte d'Azur, 13006, Marseille, France

Faculté des sciences médicales et paramédicales

Aix*Marseille Université

Pas de liens d'intérêt





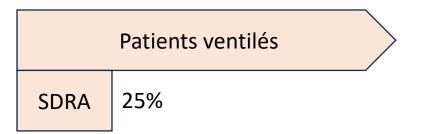
SOMMAIRE

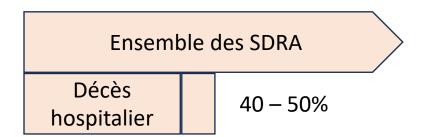
- Introduction
- Matériel et méthode
- Résultats
- Discussion

SDRA

	Acute Respiratory Distress Syndrome
Timing	Within 1 week of a known clinical insult or new or worsening respiratory symptoms
Chest imaging ^a	Bilateral opacities—not fully explained by effusions, lobar/lung collapse, or nodules
Origin of edema	Respiratory failure not fully explained by cardiac failure or fluid overload Need objective assessment (eg, echocardiography) to exclude hydrostatic edema if no risk factor present
Oxygenation ^b Mild	200 mm Hg < $PaO_2/FiO_2 \le 300$ mm Hg with PEEP or CPAP ≥5 cm H_2O^0
Moderate	100 mm Hg < PaO_2/FiO_2 ≤ 200 mm Hg with PEEP ≥5 cm H_2O
Severe	PaO₂/FiO₂ ≤ 100 mm Hg with PEEP ≥5 cm H₂O


Ashbaugh et al, Lancet, 1967


Critères de Berlin : ARDS Definition Task Force, Ranieri et al., JAMA, 2012


SDRA

Hôpital Nord, Marseille – Réanimation DRIS - Radio France - David Aussillou®

Epidemiology, patterns of care, and mortality for patients with ARDS in ICU in 50 countries, Bellani et al., JAMA 2016

National incidence rate and related mortality for acute respiratory distress syndrome in France, Papazian et al., Anaesth Crit Care Pain Med, 2020

Polluants

<u>Tableau 1</u> - Sources d'émission de polluants atmosphériques, d'après le rapport Citepa, France

Polluant	Transport	Industrie :	Industrie :	Activité	Agriculture	Nature	Polluant 2 nd
		manufacture	énergie	domestique			
PF _{2.5}	++	++	-	++++	+	NA	yes
PF ₁₀	++	+++	-	+++	+++	NA	yes
NO ₂	++++	+	+	+	+	-	no
O ₃	NC	NC	NC	NC	NC	NC	yes

Citepa, juillet 2021. Inventaire des émissions de polluants atmosphériques et de gaz à effet de serre en France Fine-particulate air pollution and life expectancy in the United States, Pope et al, 2009 N Engl J Med. The impact of exposure to particulate air pollution from non-anthropogenic sources on hospital admissions due to pneumonia. Vodonos et al, 2016 Eur Respir J.

Patients

INCLUSION

- ≥ 18 ans
- SDRA entre 2016 et 2018
- En région PACA

EXCLUSION

- SDRA hors réanimation / soins continus
- Episode de SDRA récidivant

Patients

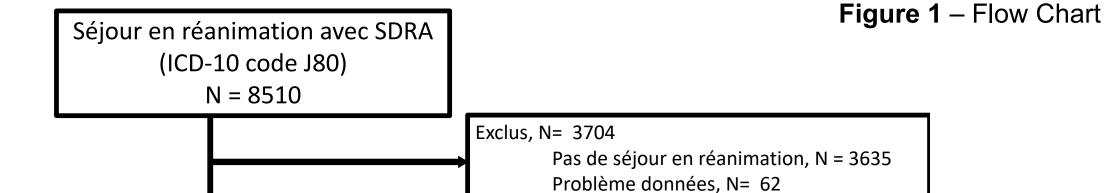
PATIENT Base PMSI et INSEE

- Clinique
- Hospitalière
- Sociale
- Géographique

POLLUTION ATMOSUD

- Moyenne à 1, 2, 3 ans précédants
- PM_{2.5}, PM₁₀, NO₂, O₃

CdJ


CRITERE DE JUGEMENT PRINCIPAL

Incidence

CRITERE DE JUGEMENT 2nd

Mortalité

Flow-chart

Patient de rénimation avec SDRA (ICD-10 code J80)
N= 4817

SDRA récidivent , N= 84

Age < 18 ans, N = 7

Patient de rénimation avec premier épisode de SDRA N= 4733

Population

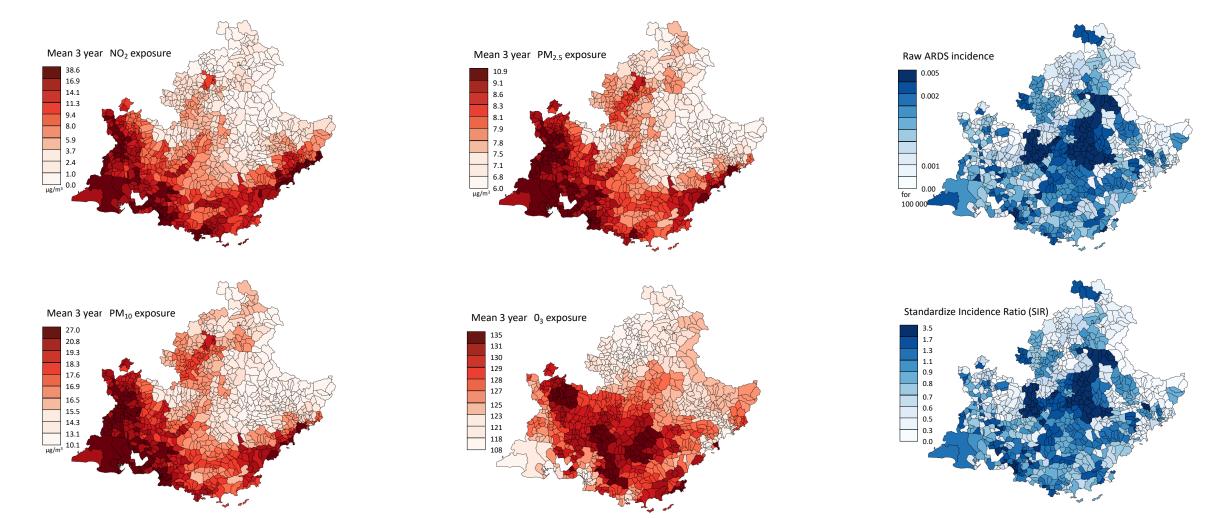

	N (%)
Caractéristiques socio-démographiques	
Age, moyenne (SD) en années	64.6 (15.5)
Homme	3149 (66.5)
Statut de deprivation sociale	
Plus favorisé	1140 (24.1)
Favorisé	1222 (25.8)
Déprivation social	1231 (26.0)
Déprivation sociale majeure	1140 (24.1)
Rural status	123 (2.6)

Tableau 2 – caractéristiques de la population de SDRA (N = 4733)

	N (%)
Caractéristiques cliniques	
Une hospitalisation précédente pendant l'année précédente	2386 (50.4)
Score de gravité IGS2, Moyenne (sd)	56.1 (21.1)
Comorbidités	
Infarctus du myocarde	595 (12.6)
Insuffisance cardiaque	1174 (24.8)
Artérielle périphérique	458 (9.7)
Cérébro-vasculaire	458 (9.7)
Pulmonaire	991 (21.0)
Hépatique	328 (6.9)
Oncologie	1572 (33.2)
SIDA	63 (1.3)

Cartographie

Figure 2 – Représentation region PACA – Niveau de pollution, incidence et incidence standardisée pour une exposition dans les 3 ans précédant le SDRA

Incidence

Tableau 2— Modèle linéaire généralisé pour l'association entre une augmentation d'une déviation standard de chaque polluant et l'incidence du SDRA

	Exposition Moyenr	e 3 ans	Exposition Moyer	nne 2 ans	Exposition Moyenne 1 an		
Polluant	Ratio de taux d'incidence (95% IC)	Р	Ratio de taux d'incidence (95% IC)	P	Ratio de taux d'incidence (95% IC)	P	
†NO2	1.095 (1.017 – 1.179)	0.016	1.111 (1.030 – 1.198)	0.006	1.126 (1.034 – 1.225)	0.006	
PM2.5	1.288 (1.159 – 1.431)	< 0.001	1.239 (1.217 – 1.363)	<0.001	1.237 (1.134 – 1.349)	<0.0001	
PM10	1.187 (1.097-1.286)	<0.0001	1.166 (1.078 – 1.261)	0.0001	1.181 (1.096 – 1.274)	< 0.001	
†O3	0.985 (0.930 – 1.043)	0.598	1.012 (0.953-1.074)	0.698	1.027 (0.960-1.098)	0.441	

Mortalité

Tableau 3— Régression logistique pour l'association entre une augmentation d'une déviation standard de chaque polluant et la mortalité dans le SDRA

	Exposition Moyenne	3 ans	Exposition Moyenne	e 2 ans	Exposition Moyenne 1 an		
Polluant	Polluant OR (95% CI) P		OR (95% CI) P		OR (95% CI)	Р	
†NO ₂	1.080 (0.996-1.170)	0.079	1.071 (0.988-1.161)	0.094	1.071 (0.992 -1.157)	0.080	
PM _{2.5}	1.096 (1.001-1.200)	0.048	1.078 (0.997-1.167)	0.137	1.078 (1.009-1.151)	0.026	
PM ₁₀	1.072 (0.991-1.160)	0.083	1.064 (0.981 -1.154)	0.1368	1.079 (0.998 – 1.167)	0.056	
† O ₃	1.010 (0.940 – 1.085)	0.754	0.997 (0.931 – 1.067)	0.923	0.997 (0.937 – 1.060)	0.908	

Forces / Limites

FORCES

- SDRA tous types
- Large proportion population française étudiée
- Ajustements sociaux, ruralité, gravité

LIMITES

- Information limitée sur les patients
- Rétrospectif

Chronique

	Durée	PF _{2.5}	PF ₁₀	NO ₂		O ₃	SO ₂	CO
	Années	μg/m³	μg/m³	μg/m³	ppb	ppb	ppb	mg/m³
Ware* 2016 USA	1, 3, 5	13.2		29.0 ^x	15.4	51.5	2.7	0.68
Reilly* 2018 USA	1, 2, 3	12.2		34.0 ^x	18.1	47.1	3.6	0.28
Rhee ° 2019 USA	0.5	10.8				39.1		
Gutman° 2022 France	1, 2, 3	9.1	19.6	13.1	7.0 ^x	62.9 ^x		
STANDARD OMS		5	15	10	5.3	30.6 ^x	NA	NA

Tableau 5 - Concentration des polluants atmosphériques dans les études concernant le rôle de l'exposition chronique sur l'incidence du SDRA

Aigue

		Durée	PF _{2.5}	PF ₁₀	NO ₂	O ₃	SO ₂	CO
		Jours (J)	μg/m³	μg/m³	μg/m ³	μg/m³	μg/m³	ppm
		Semaines (S)						
Reilly*	2018	3J, 5S	12.2		34.0×	92.4×	9.4×	0.28
USA								
Lin°	2018	0, 3, 5J	Environ	Environ				
China			50	75				
STANDAR	D		15	45	25	100	40	3.5 ^x
OMS								

Tableau 4 - Concentration des polluants atmosphériques dans les études relatives aux effets de l'exposition aiguë sur l'incidence du SDRA

Conclusion

- Dans une large population française, l'exposition aux $PM_{2.5}$, PM_{10} , NO_2 était associé à une incidence supérieure du SDRA.
- L'exposition chronique au PM_{2.5} était associé à une plus grande mortalité chez les patients victimes de SDRA

Contents lists available at ScienceDirect

Environmental Research

journal homepage: www.elsevier.com/locate/envres

Long-term exposure to ambient air pollution is associated with an increased incidence and mortality of acute respiratory distress syndrome in a large French region

Laëtitia Gutman ^{a,b,*}, Vanessa Pauly ^{b,c}, Veronica Orleans ^c, Damien Piga ^d, Yann Channac ^c, Alexandre Armengaud ^d, Laurent Boyer ^{b,c}, Laurent Papazian ^{a,b}

- ^a Assistance Publique Hôpitaux de Marseille, Hôpital Nord, Médecine Intensive Réanimation, 13015, Marseille, France
- b Aix-Marseille Université, Faculté de Médecine, Centre d'Etudes et de Recherches sur les Services de Santé et qualité de vie EA 3279, 13005, Marseille, France
- ^c Unité d'Analyse des données de Santé, Assistance Publique, Hôpitaux de Marseille, 13005, Marseille, France
- d AtmoSud, Observatoire de la qualité de l'air en région Sud Provence-Alpes-Côte d'Azur, 13006, Marseille, France

Faculté des sciences médicales et paramédicales

Aix*Marseille Université

