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Objectives

● What is the contribution of ships to air pollution in 
Marseille and its surroundings ?

● How ship pollution is influenced by local 
meteorological conditions ?

● How Machine Learning can be used for operational 
purpose ?
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Build a model to predict air pollution based 
on detailed ship traffic data 



Introduction



Atmospheric Pollution
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● Particulate Matter
PM2.5 = 253 000 premature deaths in 2020 in Europe1

● Gas-phase Species
O3  = 22 000 premature deaths in 2020 in Europe1

NO2 = 52 000 premature deaths in 2020 in Europe1

   1 European Environmental Agency (EEA), 2022
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1.  Introduction

Port of Marseille-Fos
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Tankers

Containers / Cargo

Cruise Ships

Ferries
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Numerical Set-Up
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Numerical set up
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WRF-CHEM
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(Weather Research and Forecasting + Chemistry) 

NCAR = National Center for Atmospheric Research



WRF-CHEM

Non-hydrostatic compressible Euler equations (Flux-form)
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● Continuity Equation

● Momentum Equation

● Humidity and Geopotential

● State and mass volume equation

● Thermodynamic Equation Where :

(Weather Research and Forecasting + Chemistry) 

NCAR = National Center for Atmospheric Research



WRF-CHEM

Non-hydrostatic compressible Euler equations (Flux-form)
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● Continuity Equation

● Momentum Equation

● Humidity and Geopotential

● State and mass volume equation

● Thermodynamic Equation Where :

Finite Difference 5th order - Runge-Kutta 3rd order - Δt = 5 s 
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● State and mass volume equation

Finite Difference 5th order - Runge-Kutta 3rd order - Δt = 5 s 



WRF-CHEM
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● 85  gas-phase species
● 157 chemical reactions
● 37 photochemical reactions

WRF-CHEM

Chemistry Aerosols
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MOZART
(Model for OZone And Related chemical Tracers)

MOSAIC
(Model for Simulating Aerosol Interactions and Chemistry)

● 4 aerosol size sections (bins)

○ bin1 = [39 - 156] nm

○ bin2 = [156 - 625] nm

○ bin3 = [0.625 - 2.5] μm

○ bin4 = [2.5 - 10] μm 



Chemical inputs
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Crippa et al. (2020)

Background Emission
From ATMOSUD: CIGALE
Δx = 9.1e-3° = 1 km

PM2.5 background emissions at ground level (log scale). 
Data from CIGALE (2019)



Chemical inputs
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Ship Emission
From GPMM and AtmoSud
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:   Nominal Power

:   Load Factor

:   Emission Factor

EMEP (2019) 
(European Environmental Agency)

PM2.5 ship emissions at 2nd and 3rd level (log scale). 
Data from GPMM (2021)



Numerical set up

Meteo
From NCEP: GDAS/FNL
Δx = 0.25° = 27 km; 

Background Emission
From ATMOSUD: CIGALE
Δx = 9.1e-3° = 1 km

WRF-CHEM
Δx = 7.2e-3° = 800 m

Δx = 7.2e-3° = 800 m

Meteo

Pollution
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Ship Emission
From GPMM and AtmoSud

17/37

Chemistry
From NCAR: WACCM
Δx = 0.23° = 25 km;



Ship Contribution



Real Case Study
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“Zero-Out” method :
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“Zero-Out” method :

Time-averaged NO2 and SO2 ship contribution for June 2021 at 8m above ground level.
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“Zero-Out” method :

Time-averaged NO2 and SO2 ship contribution for June 2021 at 8m above ground level.

IMO-2020
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“Zero-Out” method :

Time-averaged PM2.5 and PM10 ship contribution for June 2021 at 8m above ground level.
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“Zero-Out” method :

Time-averaged PM2.5 and PM10 ship contribution for June 2021 at 8m above ground level.



Sea-Land Breeze Mechanism
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Time series of PM2.5 ship-emitted average concentration over 
Marseille for 2021-04-23.

Time series of average scalar product between sea-land breeze 
vector and wind direction over Marseille

PM2.5 ship-emitted concentration for 2021-04-23 
at 8m above ground level.

Chevet et al. (2024) - Modeling of air pollution due to marine traffic in Marseille



Machine Learning



Machine / Deep Learning

Dataset

PM2.5 concentration for 2021 from WRF-CHEM
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Objective : Build a supervised hybrid Deep Learning model
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● Spatial Dimension : 

64 x 64 = 4096 

● Temporal Dimension :

7107 snapshots 〜 10 months 



RNN
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(Recurrent Neural Network) 



POD-RNN
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Multivariate POD-RNN
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Target Prediction



Conclusion
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● What is the contribution of ships to air pollution in Marseille and its 
surroundings ?

● How ship pollution is influenced by local meteorological conditions ?

● How Machine Learning can be used for operational purpose ?

➢ Built a numerical setup based on hourly ship traffic data
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● What is the contribution of ships to air pollution in Marseille and its 
surroundings ?

● How ship pollution is influenced by local meteorological conditions ?

● How Machine Learning can be used for operational purpose ?

➢ Built a numerical setup based on hourly ship traffic data

➢ Quantitative results : PM2.5      6.5 % ; PM10      4 % ; SO2       2 % ; NO2       18 %

➢ Sea-land breeze dynamics contribute to pollutant accumulation 

➢ Development of a POD-RNN model for operational purpose : 
Univariate and Multivariate



Questions


