Modeling of Atmospheric Pollution Due to Marine Traffic in Marseille

Elliot Chevet

Supervisors : Olivier Boiron - Fabien Anselmet

Aix Marseille University, CNRS, Centrale Méditerranée, IRPHE, Marseille, France

elliot.chevet@centrale-mediterranee.fr

Inspirer un air meilleur

Objectives

Build a model to predict air pollution based on detailed ship traffic data

- What is the contribution of ships to air pollution in Marseille and its surroundings ?
- How ship pollution is influenced by local meteorological conditions ?
- How Machine Learning can be used for operational purpose ?

Introduction

Atmospheric Pollution

WHO air quality guidelines (AQGs)

$\operatorname{Pollutant}$	Averaging period	AQG
PM_{10}	$1 \mathrm{day}$	$45 \ \mu g.m^{-3}$
	calendar year	$15 \ \mu g.m^{-3}$
$PM_{2.5}$	1 day	$15 \ \mu g.m^{-3}$
Ĺ	calendar year	$5 \ \mu g.m^{-3}$)
O_3	Maximum daily 8-h mean	$100 \ \mu g.m^{-3}$
	peak season	$60~\mu g.m^{-3}$
NO_2	1 hour	$200 \ \mu g.m^{-3}$
	$1 \mathrm{day}$	$25~\mu g.m^{-3}$
	calendar year	$10~\mu g.m^{-3}$
SO_2	10 minutes	$500 \ \mu g.m^{-3}$
L	$1 \mathrm{day}$	$40 \ \mu g.m^{-3}$
CO	1 hour	$30 \ mg.m^{-3}$
	Maximum daily 8-hour mean	$10\ mg.m^{-3}$
	$1 \mathrm{day}$	$4 \ mg.m^{-3}$
BaP	calendar year	_
C_6H_6	calendar year	_
Pb	calendar year	$0.5 \ \mu g.m^{-3}$
As	calendar year	
Cd	calendar year	$5 \ ng.m^{-3}$
Ni	calendar year	

Particulate Matter
 DM = 357,000 promoture doot ho in 20

 $PM_{2.5} = 253\ 000\ \text{premature deaths in } 2020\ \text{in Europe}^1$

• Gas-phase Species

 $O_3 = 22\,000$ premature deaths in 2020 in Europe¹

 $NO_2 = 52\ 000\ \text{premature deaths in } 2020\ \text{in Europe}^1$

¹ European Environmental Agency (EEA), 2022

Port of Marseille-Fos

Ferries

5/37

Numerical Set-Up

Numerical set up

(Weather Research and Forecasting + Chemistry)

NCAR = National Center for Atmospheric Research

WRF-CHEM (Weather Research and Forecasting + Chemistry)

NCAR = National Center for Atmospheric Research

Non-hydrostatic compressible Euler equations (Flux-form)

- Continuity Equation $\partial_t \mu_d + (\nabla . \mathbf{V}) = 0$
- Momentum Equation

$$\begin{split} \partial_t U &+ (\nabla . \mathbf{V}u) + \mu_d \alpha \partial_x p + (\alpha/\alpha_d) \partial_\eta p \partial_x \phi = F_U \\ \partial_t V &+ (\nabla . \mathbf{V}v) + \mu_d \alpha \partial_y p + (\alpha/\alpha_d) \partial_\eta p \partial_y \phi = F_V \\ \partial_t W &+ (\nabla . \mathbf{V}w) - g(\partial_\eta p - \mu_d) = F_W \end{split}$$

• Thermodynamic Equation $\partial_t \Theta + (\nabla . \mathbf{V} \theta) = F_{\Theta}$

- Humidity and Geopotential $\partial_t Q_m + (\nabla \cdot \mathbf{V} q_m) = F_{Q_m}$ $\partial_t \phi + [(\mathbf{V} \cdot \nabla \phi) - gW]/\mu_d = 0$
- State and mass volume equation $p = p_0 (R_d \theta_m / p_0 \alpha_d)^{\gamma}$ $\partial_\eta \phi = -\alpha_d \mu_d$

Where: $\mathbf{V} = \mu_d \mathbf{v}$ $\phi = gz$ $\alpha = 1/
ho$ $\mu_d = p_{dhs} - p_{dht}$

n 4. Ma

Non-hydrostatic compressible Euler equations (Flux-form)

- \longrightarrow Finite Difference 5th order Runge-Kutta 3rd order $\Delta t = 5 \text{ s}$
 - Continuity Equation $\partial_t \mu_d + (\nabla . \mathbf{V}) = 0$

• Momentum Equation

 $\begin{aligned} \partial_t U + (\nabla \cdot \mathbf{V}u) &+ \mu_d \alpha \partial_x p + (\alpha/\alpha_d) \partial_\eta p \partial_x \phi = F_U \\ \partial_t V + (\nabla \cdot \mathbf{V}v) &+ \mu_d \alpha \partial_y p + (\alpha/\alpha_d) \partial_\eta p \partial_y \phi = F_V \\ \partial_t W + (\nabla \cdot \mathbf{V}w) - g(\partial_\eta p - \mu_d) = F_W \end{aligned}$

• Thermodynamic Equation $\partial_t \Theta + (\nabla . \mathbf{V} \theta) = F_{\Theta}$

- Humidity and Geopotential $\partial_t Q_m + (\nabla . \mathbf{V} q_m) = F_{Q_m}$ $\partial_t \phi + [(\mathbf{V} . \nabla \phi) - gW]/\mu_d = 0$
- State and mass volume equation $p = p_0 (R_d \theta_m / p_0 \alpha_d)^{\gamma}$ $\partial_\eta \phi = -\alpha_d \mu_d$

Where: $\mathbf{V} = \mu_d \mathbf{v}$ $\phi = gz$ $\alpha = 1/
ho$ $\mu_d = p_{dhs} - p_{dht}$

4. Machine Learning

Non-hydrostatic compressible Euler equations (Flux-form)

- \longrightarrow Finite Difference 5th order Runge-Kutta 3rd order $\Delta t = 5 \text{ s}$
 - Continuity Equation $\partial_t \mu_d + (\nabla . \mathbf{V}) = 0$
 - Momentum Equation

 $\begin{aligned} \partial_t U + (\nabla \cdot \mathbf{V}u) &+ \mu_d \alpha \partial_x p + (\alpha/\alpha_d) \partial_\eta p \partial_x \phi = \overline{F_U} \\ \partial_t V + (\nabla \cdot \mathbf{V}v) &+ \mu_d \alpha \partial_y p + (\alpha/\alpha_d) \partial_\eta p \partial_y \phi = \overline{F_V} \\ \partial_t W + (\nabla \cdot \mathbf{V}w) - g(\partial_\eta p - \mu_d) = \overline{F_W} \end{aligned}$

• Thermodynamic Equation $\partial_t \Theta + (\nabla \cdot \mathbf{V} \theta) = \overline{F_{\Theta}}$

- Humidity and Geopotential $\partial_t Q_m + (\nabla \cdot \mathbf{V} q_m) = \overline{F_{Q_m}}$ $\partial_t \phi + [(\mathbf{V} \cdot \nabla \phi) - gW]/\mu_d = 0$
- State and mass volume equation $p = p_0 (R_d \theta_m / p_0 \alpha_d)^{\gamma}$ $\partial_\eta \phi = -\alpha_d \mu_d$

Where: $\mathbf{V} = \mu_d \mathbf{v}$ $\phi = gz$ $\alpha = 1/
ho$ $\mu_d = p_{dhs} - p_{dht}$

MOZART

(Model for OZone And Related chemical Tracers)

- 85 gas-phase species \bullet
- 157 chemical reactions
- 37 photochemical reactions

(Model for Simulating Aerosol Interactions and Chemistry)

- 4 aerosol size sections (bins)
 - bin, = [39 156] nm 0
 - bin₂ = [156 625] nm 0
 - bin₃ = [0.625 2.5] μm 0
 - bin₄ = [2.5 10] μm 0

Chemical inputs

$$E_h = E_a \times C_m \times C_d \times C_l$$

2.

Model

Crippa et al. (2020)

Introduction

Chemical inputs

Numerical set up

Introduction

2. Model Ship Contribution

Conclusion

Ship Contribution

"Zero-Out" method : $[C_{ship}]_{\%} = \left[\frac{C_{bg+ship} - C_{bg}}{C_{bg+ship}}\right]_{\%}$

"Zero-Out" method: $[C_{ship}]_{\%} = \left[\frac{C_{bg+ship} - C_{bg}}{C_{bg+ship}}\right]_{\%}$

 SO_2

Time-averaged NO₂ and SO₂ ship contribution for June 2021 at 8m above ground level.

"Zero-Out" method: $[C_{ship}]_{\%} = \left[\frac{C_{bg+ship} - C_{bg}}{C_{bg+ship}}\right]$

IMO-2020

 NO_2

 SO_2

Time-averaged NO₂ and SO₂ ship contribution for June 2021 at 8m above ground level.

"Zero-Out" method :
$$[C_{ship}]_{\%} = \left[\frac{C_{bg+ship} - C_{bg}}{C_{bg+ship}}\right]_{\%}$$

 $\overline{PM}_{2.5}$

Time-averaged PM_{25} and PM_{10} ship contribution for June 2021 at 8m above ground level.

"Zero-Out" method:
$$[C_{ship}]_{\%} = \left[\frac{C_{bg+ship} - C_{bg}}{C_{bg+ship}}\right]_{\%}$$

 $PM_{2.5}$

Time-averaged PM_{25} and PM_{10} ship contribution for June 2021 at 8m above ground level.

Ship Contribution

Sea-Land Breeze Mechanism

Time series of average scalar product between sea-land breeze vector and wind direction over Marseille

24/37

Chevet et al. (2024) - Modeling of air pollution due to marine traffic in Marseille

Machine Learning

Machine / Deep Learning

Objective : Build a supervised hybrid Deep Learning model

Dataset

PM2.5 concentration for 2021 from WRF-CHEM

• Spatial Dimension :

64 x 64 = 4096

• Temporal Dimension :

7107 snapshots \sim 10 months

RNN (Recurrent Neural Network)

Multivariate POD-RNN

Built a numerical setup based on hourly ship traffic data

• What is the contribution of ships to air pollution in Marseille and its surroundings ?

• How ship pollution is influenced by local meteorological conditions?

• How Machine Learning can be used for operational purpose ?

Built a numerical setup based on hourly ship traffic data

- What is the contribution of ships to air pollution in Marseille and its surroundings ?
 - > Quantitative results : $PM_{25} \rightarrow 6.5\%$; $PM_{10} \rightarrow 4\%$; $SO_2 \rightarrow 2\%$; $NO_2 \rightarrow 18\%$
- How ship pollution is influenced by local meteorological conditions ?

• How Machine Learning can be used for operational purpose ?

Built a numerical setup based on hourly ship traffic data

- What is the contribution of ships to air pollution in Marseille and its surroundings ?
 - > Quantitative results : $PM_{25} \rightarrow 6.5\%$; $PM_{10} \rightarrow 4\%$; $SO_2 \rightarrow 2\%$; $NO_2 \rightarrow 18\%$
- How ship pollution is influenced by local meteorological conditions ?
 - > Sea-land breeze dynamics contribute to pollutant accumulation
- How Machine Learning can be used for operational purpose ?

Built a numerical setup based on hourly ship traffic data

- What is the contribution of ships to air pollution in Marseille and its surroundings ?
 - > Quantitative results : $PM_{25} \rightarrow 6.5\%$; $PM_{10} \rightarrow 4\%$; $SO_2 \rightarrow 2\%$; $NO_2 \rightarrow 18\%$
- How ship pollution is influenced by local meteorological conditions?
 - > Sea-land breeze dynamics contribute to pollutant accumulation
- How Machine Learning can be used for operational purpose ?
 - Development of a POD-RNN model for operational purpose : Univariate and Multivariate

5.

Questions