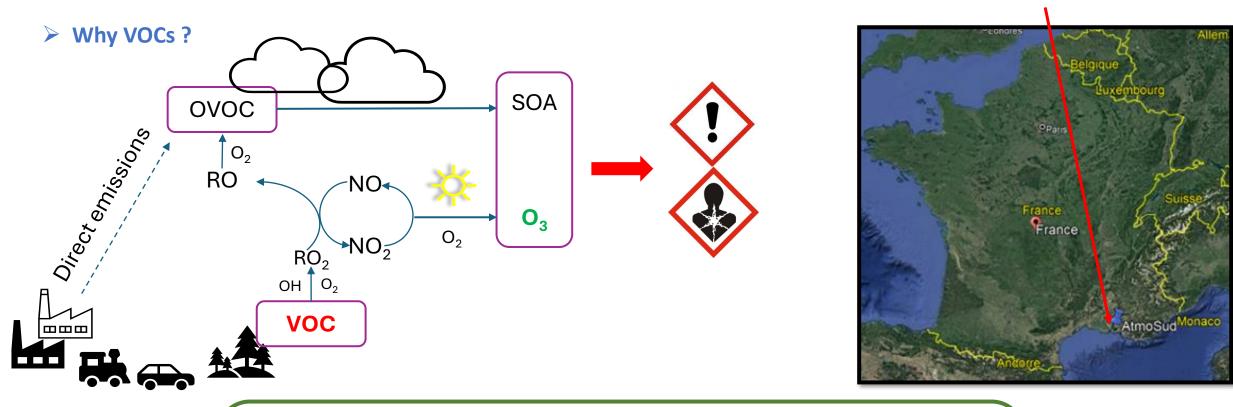
IMT Nord Europe École Mines-Télécom IMT-Université de Lille

Inspirer un air meilleur

New APPROACH TO REAL-TIME ANALYSIS OF MULTI-SITE VOLATILE ORGANIC COMPOUND (VOC) OBSERVATION DATA FROM AN INDUSTRIAL ZONE IN THE SOUTH OF FRANCE


Zahra Benmouhoub^{1,2}, Gregory Gille², Liselotte Tinel¹, Céline Cancedda², Vladislav Navel^{3,} Stéphane Sauvage¹, Nadine Locoge¹

¹ IMT Nord Europe, Institut Mines-Télécom, University of Lille, Center for Energy and Environnement, 59500 Douai, France

² AtmoSud, Le Noilly Paradis, 146 rue Paradis, 13006 Marseille, France

³ Atmo Nouvelle-Aquitaine, 13 All. James Watt Za, 33700 Mérignac, France

CONTEXT

 \succ O₃ and PM threshold values exceeded in 2018- Benjamin Chazeau et al., 2021,

Atmospheric chemistry and physics

> 1400 premature deaths and more than 1800 hospitalizations between 2010

and 2018 (Fine particles) - Khaniabadi et Sicard, 2021, Chemosphere

STUDY AREA

Sites equipped with VOC analyzers

Weather conditions

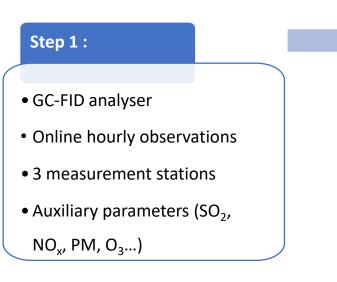
- ✓ Strong sunlight
- ✓ Specific air mass circulation

Multiple sources

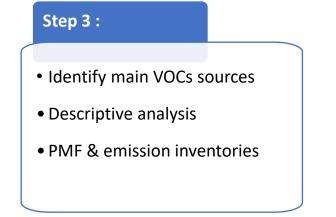
- ✓ Road transport
- ✓ Maritime transport
- ✓ Industrial (

Large population basin

✓ 1 903 173 inhabitants (in 2020)
→ More problematic

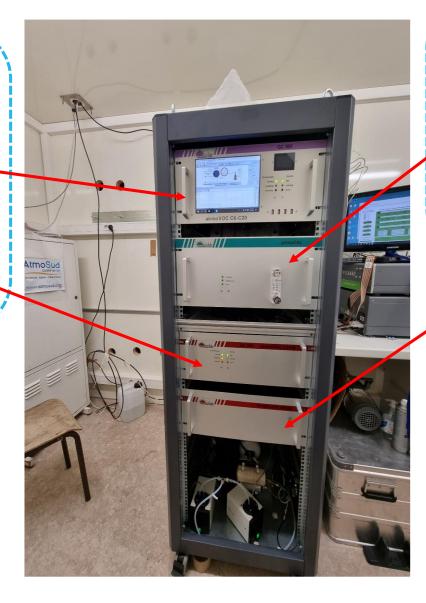

OBJECTIVE & METHODOLOGY

Goal of study :


Identify sources using Positive Matrix Factorisation (PMF) and predict pollution events and the factors responsible for these episodes with Machine Learning using observed VOCs data

Methodology :

Step 2 :	
Data validation & QA/QC	
protocol	
Continuous control	
 Uncertainty calculation 	


ON-LINE VOC ANALYZERS

airmoVOC :

- GC-FID*
- 2 analytical chains for heavy (C6C20) and light (C2C6) compounds
- Preconcentrator
- Pneumatic injection valve

airmoPURE :

- Air generator, membrane dryer and catalyst
- Dry and zero air production

airmoCAL :

- 2 ovens + 2 heated valves
- Sampling and calibration system
- Permeation tubes

hydroxychrom :

- Hydrogen production (FID + carrier gas)
- 1m long PFA heated
 - sampling line

06/12/2024

*Gas chromatographs coupled to a flame ionization detector

LIST OF MEASURED COMPOUNDS

06/12/2024

21 compounds C2-C6	23 compounds C6-C20
N-butane	Benzene
N-hexane	Toluene
1,3-Butadiene	Ethylbenzene
Vinyl chloride monomer (VCM)	M+P-xylene
Ethylene	O-xylene
Ethane	1,2-Dichloroethane
Propene	Cyclohexane
Propane	Trichloroethylene
Acetylene	Tetrachloroethylene
Trans-2-butene	Styrene
1-Butene	Naphtalene
Cis-2-butene	2,2-Dimethylbutane
Cyclopentane	2-Methylpentane
Trans-2-pentene	1-Hexene
Isopentane	1,4-Dichlorobenzene
N-pentane	123-Trimethylbenzene
Isoprene	124-Trimethylbenzene
Methylcyclopentane	135-Trimethylbenzene
1-Pentene	Methylcyclohexane
Isobutane	N-nonane
Cis-2-pentene	N-octane
	N-heptane
	3-Methylheptane

44 VOCs measured at the 3 stations

European Directive : list of 31 ozone precursor compounds

ANSES : French Agency for Food, Environmental and Occupational Health and Safety)

(Saisine ANSES n° « 2015-SA-0218 »)

AtmoSud

UNCERTAINTY EVALUATION

 $uX_{inc}^{2} = uX_{gp}^{2} + uX_{st}^{2} + uX_{v}^{2} + uX_{H20}^{2} + uX_{m}^{2} + uX_{lp}^{2} + uX_{fp}^{2} uX_{blanc}^{2} + uX_{prec}^{2} + uX_{cal}^{2} + uX_{int}^{2} + uX_{l}^{2}$

Parameters related to :

06/12/2024

Environmental conditions of the site :

- Gas pressure uX_{gp}^2 (µg.m⁻³);
- Surrounding temerature uX_{st}^{2} (µg.m⁻³);
- Voltage variation uX_v^2 (µg.m⁻³);
- Water vapor interference uX_{H2O}^{2} (µg.m⁻³);

Equipment and sampling :

- sampling line uX_{lp}^{2} (µg.m⁻³);
- particle filter uX_{fp}^2 (µg.m⁻³);
- memory effect uX_{m}^{2} (µg.m⁻³);
- Uncertainty of blank uX^{2}_{blanc} (µg.m⁻³);

Calibration and performance of the instrument :

- Uncertainty of precision uX_{prec}^2 (µg.m⁻³);
- Calibration uncertainty uX_{cal}^2 (µg.m⁻³);
- Uncertainty of integration uX_{int}^2 (µg.m⁻³);
- real linearity deviation uX_l^2 (µg.m⁻³);

Combined uncertainty calculation :

- Benzene standard (NF EN 14662-3 12-2015) : Directive 2008/50/CE imposes a limit value of 25% for a concentration of 5 μg.m⁻³.
- ACTRIS approach (SOP-ACTRIS)

7

ACTRIS : The Aerosol, Clouds and Trace Gases Research Infrastructure

UNCERTAINTY SUMMARY

> The uncertainties calculated for a concentration of 5 μ g/m³ at the three stations ranged from 9% to

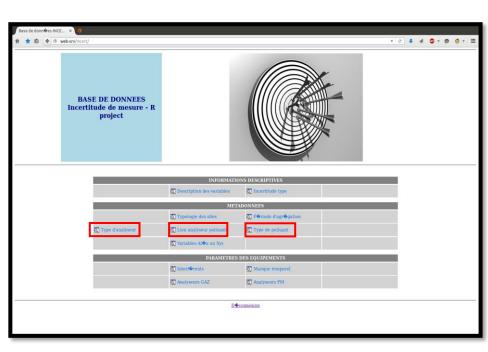
20%, depending on the compound;

- The uncertainty for benzene, the only regulated VOC, was around 9%, well below the European directive limit of 25%;
- > A detailed report on the calculation of uncertainties will be available to all AASQAs;
- > Every day, the 3 stations generate 216 chromatograms, i.e. a total of 9,504 peaks to be analyzed daily;
- Real-time storage of hourly concentrations, with specific uncertainties linked to each concentration and each compound X (Incert'R),

INCERT'R

General information

Developed by :

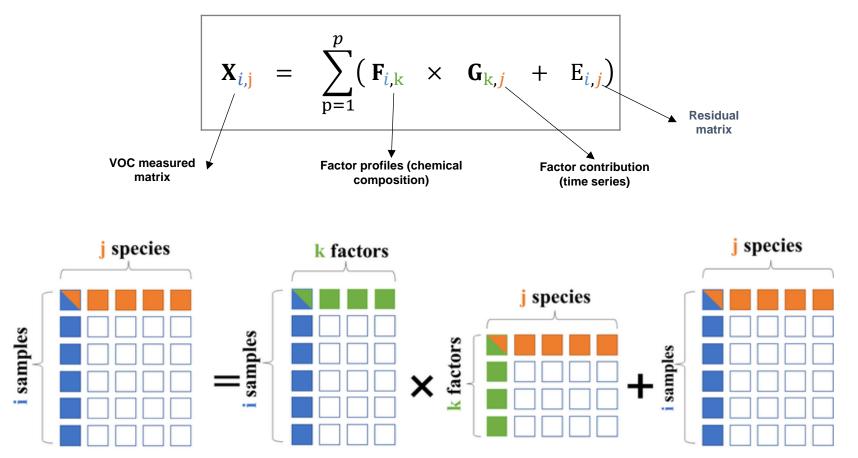

- Air Pays de la Loire;
- Airparif;
- Atmo Nouvelle-Aquitaine;

Functionalities :

- Calculation of measurement uncertainties at various possible aggregation steps (15 min, hour, day, month, etc.) for regulated automatic measurements (gases and particulates) ;
- From 2023, a new module dedicated to VOCs was added with a help of Vladislav Navel, as part of my thesis;

Basis of calculation :

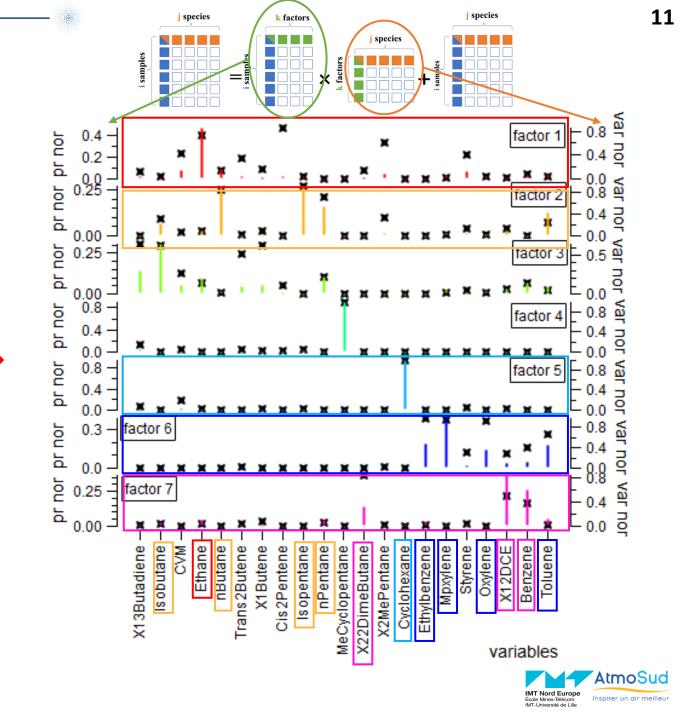
- Data : Air quality measurements;
- Complementary database : Input of calculation parameters;
- Algorithms : A set of algorithms grouped together in an R software package;


06/12/2024

POSITIVE MATRIX FACTORISATION (PMF)

> PMF approach :

Multifactor analysis based on :


- Covariation of input variables;
- Conservation of mass

PRELIMINARY RESULT

- Example of preliminary results obtained from the initial tests conducted using PMF :
 - Berre l'Etang station;
 - Three months of hourly data (March, April, and May 2022);
- **5781** light and heavy column chromatograms, i.e. **121 401** processed peaks;
- 21 VOCs analyzed;
- Factor analysis ranging from 3 to 12 factors across 20 runs;
- Final presentation of results using **7 factors;**
- **80%** of data are explained by the model.

CONCLUSION

- Online VOCs measurement : Continuous VOC monitoring using GC-FID at 3 stations since 2022;
- Chromatogram Monitoring : Daily oversight to prevent identification errors;
- QA/QC Protocol Updates : Ongoing improvements to the quality assurance and control procedures;
- Uncertainty Calculation : Uncertainty was calculated by combining the

benzene standard with the ACTRIS approach;

Automation : The uncertainty calculation process has been successfully automated (Incert'R).

PERSPECTIVES

> Expand PMF Analyses: Conduct additional PMF studies across other seasons or extend the current analysis by

another month, and perform the analysis for the years 2022 and 2023;

- Source Identification: Identify various VOC sources by integrating auxiliary parameters (NO_x, SO₂, Ozone, etc.);
- Key Determinants: Identify the main factors influencing the observed VOC concentrations;
- > PMF on all Measurement Sites : Apply PMF on the 3 sites, then combine the result obtained from these

stations to study the impact of one site on the others;

- > Automated Approach: Implement PMF Rolling for automated source identification;
- > Pollution event prediction: predict pollution events related to the formation of ozone and fine particles;
- > Emission Inventory Improvement: Improve emission inventories, particularly for industrial emissions.

THANK YOU FOR YOUR ATTENTION